Single-cell RNA-seq data analysis based on directed graph neural network

聚类分析 计算机科学 模式识别(心理学) 人工智能 聚类系数 数据挖掘 插补(统计学) 相互信息 欧几里德距离 轮廓 图形 余弦相似度 人工神经网络 机器学习 缺少数据 理论计算机科学
作者
Xiang Feng,Hongqi Zhang,Hao Lin,Haixia Long
出处
期刊:Methods [Elsevier BV]
卷期号:211: 48-60 被引量:4
标识
DOI:10.1016/j.ymeth.2023.02.008
摘要

Single-cell RNA sequencing (scRNA-seq) data scale surges with high-throughput sequencing technology development. However, although single-cell data analysis is a powerful tool, various issues have been reported, such as sequencing sparsity and complex differential patterns in gene expression. Statistical or traditional machine learning methods are inefficient, and the accuracy needs to be improved. The methods based on deep learning can not directly process non-Euclidean spatial data, such as cell diagrams. In this study, we have developed graph autoencoders and graph attention network for scRNA-seq analysis based on a directed graph neural network named scDGAE. Directed graph neural networks cannot only retain the connection properties of the directed graph but also expand the receptive field of the convolution operation. Cosine similarity, median L1 distance, and root-mean-squared error are used to measure the gene imputation performance of different methods with scDGAE. Furthermore, adjusted mutual information, normalized mutual information, completeness score, and Silhouette coefficient score are used to measure the cell clustering performance of different methods with scDGAE. Experiment results show that the scDGAE model achieves promising performance in gene imputation and cell clustering prediction on four scRNA-seq data sets with gold-standard cell labels. Furthermore, it is a robust framework that can be applied to general scRNA-Seq analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
Grtin完成签到,获得积分20
4秒前
5秒前
yan发布了新的文献求助10
5秒前
闪闪的以山完成签到 ,获得积分10
6秒前
7秒前
8秒前
阳光的定帮完成签到,获得积分10
8秒前
Lin发布了新的文献求助10
10秒前
meperidine完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
binshier完成签到,获得积分10
12秒前
赘婿应助ziying126采纳,获得10
14秒前
15秒前
无花果应助Grtin采纳,获得10
15秒前
15秒前
16秒前
yan完成签到,获得积分10
16秒前
元元发布了新的文献求助30
18秒前
18秒前
19秒前
慕青应助科视采纳,获得10
19秒前
20秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
Akim应助miemie采纳,获得10
21秒前
yeon发布了新的文献求助10
21秒前
谨慎绿柏发布了新的文献求助10
21秒前
包子凯越完成签到,获得积分10
22秒前
陈一一完成签到 ,获得积分10
22秒前
suyi完成签到,获得积分10
22秒前
ding应助尊敬寒松采纳,获得10
23秒前
changxu完成签到,获得积分10
24秒前
24秒前
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667773
求助须知:如何正确求助?哪些是违规求助? 3226242
关于积分的说明 9768746
捐赠科研通 2936222
什么是DOI,文献DOI怎么找? 1608301
邀请新用户注册赠送积分活动 759615
科研通“疑难数据库(出版商)”最低求助积分说明 735407