亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Synthesized Millimeter-Waves for Human Motion Sensing

计算机科学 人工智能 分类器(UML) 计算机视觉 极高频率 运动捕捉 活动识别 匹配移动 跟踪(教育) 人体运动 运动(物理) 电信 心理学 教育学
作者
Xiaotong Zhang,Zhenjiang Li,Zhang Jin
标识
DOI:10.1145/3560905.3568542
摘要

Millimeter-wave (mmWave)-based human motion sensing, such as activity recognition and skeleton tracking, enables many useful applications. However, it suffers from a scarcity issue of training datasets, which fundamentally limits a widespread adoption of this technology in practice, as collecting and labeling such datasets are difficult and expensive. This paper presents SynMotion, a new mmWave-based human motion sensing system. Its novelty lies in harvesting available vision-based human motion datasets, for knowing the coordinates of body skeletal points under different motions, to synthesize mmWave sensing signals that bounce off the human body, so that the synthesized signals could inherit labels (skeletal coordinates and the name of each motion) from vision-based datasets directly. SynMotion demonstrates the ability to generate such labeled synthesized data at high quality to address the training-data scarcity issue and enable two sensing services that can work with commercial radars, including 1) zero-shot activity recognition, where the classifier reads real mmWaves for recognition, but it is only trained on synthesized data; and 2) body skeleton tracking with few/zero-shot learning on real mmWaves. To design SynMotion, we address the challenges of both the inherent complication of mmWave synthesis and the micro-level differences compared to real mmWaves. Extensive experiments show that SynMotion outperforms the latest zero-shot mmWave-based activity recognition method. For skeleton tracking, SynMotion achieves comparable performance to the state-of-the-art mmWave-based method trained on the labeled mmWaves, and SynMotion can further outperform it for the unseen users.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
14秒前
39秒前
40秒前
41秒前
42秒前
43秒前
43秒前
44秒前
44秒前
44秒前
44秒前
45秒前
46秒前
46秒前
46秒前
lawang发布了新的文献求助10
46秒前
lawang发布了新的文献求助10
46秒前
lawang发布了新的文献求助10
46秒前
lawang发布了新的文献求助10
49秒前
lawang发布了新的文献求助10
49秒前
lawang发布了新的文献求助10
49秒前
lawang发布了新的文献求助10
49秒前
lawang发布了新的文献求助10
49秒前
1分钟前
yang发布了新的文献求助10
1分钟前
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
Endymion发布了新的文献求助10
1分钟前
1分钟前
Endymion完成签到,获得积分10
1分钟前
激动的似狮完成签到,获得积分0
2分钟前
矜持完成签到 ,获得积分10
2分钟前
lalala完成签到,获得积分10
3分钟前
顾矜应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
平常以云完成签到 ,获得积分10
3分钟前
3分钟前
斯文败类应助lawang采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658113
求助须知:如何正确求助?哪些是违规求助? 4817258
关于积分的说明 15080877
捐赠科研通 4816425
什么是DOI,文献DOI怎么找? 2577351
邀请新用户注册赠送积分活动 1532344
关于科研通互助平台的介绍 1490957