已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Synthesized Millimeter-Waves for Human Motion Sensing

计算机科学 人工智能 分类器(UML) 计算机视觉 极高频率 运动捕捉 活动识别 匹配移动 跟踪(教育) 人体运动 运动(物理) 电信 心理学 教育学
作者
Xiaotong Zhang,Zhenjiang Li,Zhang Jin
标识
DOI:10.1145/3560905.3568542
摘要

Millimeter-wave (mmWave)-based human motion sensing, such as activity recognition and skeleton tracking, enables many useful applications. However, it suffers from a scarcity issue of training datasets, which fundamentally limits a widespread adoption of this technology in practice, as collecting and labeling such datasets are difficult and expensive. This paper presents SynMotion, a new mmWave-based human motion sensing system. Its novelty lies in harvesting available vision-based human motion datasets, for knowing the coordinates of body skeletal points under different motions, to synthesize mmWave sensing signals that bounce off the human body, so that the synthesized signals could inherit labels (skeletal coordinates and the name of each motion) from vision-based datasets directly. SynMotion demonstrates the ability to generate such labeled synthesized data at high quality to address the training-data scarcity issue and enable two sensing services that can work with commercial radars, including 1) zero-shot activity recognition, where the classifier reads real mmWaves for recognition, but it is only trained on synthesized data; and 2) body skeleton tracking with few/zero-shot learning on real mmWaves. To design SynMotion, we address the challenges of both the inherent complication of mmWave synthesis and the micro-level differences compared to real mmWaves. Extensive experiments show that SynMotion outperforms the latest zero-shot mmWave-based activity recognition method. For skeleton tracking, SynMotion achieves comparable performance to the state-of-the-art mmWave-based method trained on the labeled mmWaves, and SynMotion can further outperform it for the unseen users.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助重要风华采纳,获得10
2秒前
Fancy应助无极微光采纳,获得20
3秒前
领导范儿应助xiayimiao采纳,获得10
5秒前
5秒前
6秒前
脑洞疼应助犯花痴的大叔采纳,获得10
6秒前
7秒前
gndd发布了新的文献求助30
7秒前
ZL完成签到,获得积分10
7秒前
9秒前
ASH完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
12秒前
随机昵称发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
13秒前
张涵晟发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
张涵晟发布了新的文献求助10
14秒前
张涵晟发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763150
求助须知:如何正确求助?哪些是违规求助? 5538967
关于积分的说明 15404361
捐赠科研通 4899061
什么是DOI,文献DOI怎么找? 2635256
邀请新用户注册赠送积分活动 1583366
关于科研通互助平台的介绍 1538470