Synthesized Millimeter-Waves for Human Motion Sensing

计算机科学 人工智能 分类器(UML) 计算机视觉 极高频率 运动捕捉 活动识别 匹配移动 跟踪(教育) 人体运动 运动(物理) 电信 心理学 教育学
作者
Xiaotong Zhang,Zhenjiang Li,Zhang Jin
标识
DOI:10.1145/3560905.3568542
摘要

Millimeter-wave (mmWave)-based human motion sensing, such as activity recognition and skeleton tracking, enables many useful applications. However, it suffers from a scarcity issue of training datasets, which fundamentally limits a widespread adoption of this technology in practice, as collecting and labeling such datasets are difficult and expensive. This paper presents SynMotion, a new mmWave-based human motion sensing system. Its novelty lies in harvesting available vision-based human motion datasets, for knowing the coordinates of body skeletal points under different motions, to synthesize mmWave sensing signals that bounce off the human body, so that the synthesized signals could inherit labels (skeletal coordinates and the name of each motion) from vision-based datasets directly. SynMotion demonstrates the ability to generate such labeled synthesized data at high quality to address the training-data scarcity issue and enable two sensing services that can work with commercial radars, including 1) zero-shot activity recognition, where the classifier reads real mmWaves for recognition, but it is only trained on synthesized data; and 2) body skeleton tracking with few/zero-shot learning on real mmWaves. To design SynMotion, we address the challenges of both the inherent complication of mmWave synthesis and the micro-level differences compared to real mmWaves. Extensive experiments show that SynMotion outperforms the latest zero-shot mmWave-based activity recognition method. For skeleton tracking, SynMotion achieves comparable performance to the state-of-the-art mmWave-based method trained on the labeled mmWaves, and SynMotion can further outperform it for the unseen users.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hsx完成签到,获得积分10
刚刚
研友_VZG7GZ应助emmm采纳,获得10
1秒前
疲疲又惫惫完成签到,获得积分10
1秒前
周周发布了新的文献求助20
2秒前
Anton发布了新的文献求助20
2秒前
lemon发布了新的文献求助10
2秒前
2秒前
浪子应助米虫采纳,获得10
2秒前
2秒前
CITY111119发布了新的文献求助10
2秒前
2秒前
纯情的咖啡豆完成签到 ,获得积分10
3秒前
丹妮完成签到,获得积分10
3秒前
但小安发布了新的文献求助10
4秒前
David123发布了新的文献求助10
4秒前
4秒前
王小锤发布了新的文献求助10
4秒前
4秒前
4秒前
科研通AI6应助chunfneg采纳,获得10
5秒前
哈利波特大完成签到,获得积分10
5秒前
5秒前
蓝天发布了新的文献求助10
6秒前
33发布了新的文献求助10
6秒前
7秒前
guoym发布了新的文献求助10
7秒前
椰汁驳回了英姑应助
7秒前
7秒前
Lawenced完成签到,获得积分10
8秒前
8秒前
321完成签到,获得积分10
9秒前
9秒前
tong发布了新的文献求助30
9秒前
10秒前
Ruadong完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
Stone发布了新的文献求助10
11秒前
852应助33采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836