淋巴系统
间质液
脑脊液
水通道蛋白4
血管周围间隙
间隙
磁共振成像
化学
磁共振弥散成像
流动和结晶的智力
病理
盒内非相干运动
扩散
水运
神经科学
医学
流体智能
物理
生物
放射科
水流
工作记忆
认知
热力学
环境工程
工程类
作者
Ryszard Gomolka,Lauren M. Hablitz,Humberto Mestre,Michael Giannetto,Ting Du,Natalie L. Hauglund,Lulu Xie,Weiguo Peng,Patricia López Martínez,Maiken Nedergaard,Yutaka Mori
出处
期刊:eLife
[eLife Sciences Publications, Ltd.]
日期:2023-02-09
卷期号:12
被引量:16
摘要
The glymphatic system is a fluid transport network of cerebrospinal fluid (CSF) entering the brain along arterial perivascular spaces, exchanging with interstitial fluid (ISF), ultimately establishing directional clearance of interstitial solutes. CSF transport is facilitated by the expression of aquaporin-4 (AQP4) water channels on the perivascular endfeet of astrocytes. Mice with genetic deletion of AQP4 (AQP4 KO) exhibit abnormalities in the brain structure and molecular water transport. Yet, no studies have systematically examined how these abnormalities in structure and water transport correlate with glymphatic function. Here, we used high-resolution 3D magnetic resonance (MR) non-contrast cisternography, diffusion-weighted MR imaging (MR-DWI) along with intravoxel-incoherent motion (IVIM) DWI, while evaluating glymphatic function using a standard dynamic contrast-enhanced MR imaging to better understand how water transport and glymphatic function is disrupted after genetic deletion of AQP4. AQP4 KO mice had larger interstitial spaces and total brain volumes resulting in higher water content and reduced CSF space volumes, despite similar CSF production rates and vascular density compared to wildtype mice. The larger interstitial fluid volume likely resulted in increased slow but not fast MR diffusion measures and coincided with reduced glymphatic influx. This markedly altered brain fluid transport in AQP4 KO mice may result from a reduction in glymphatic clearance, leading to enlargement and stagnation of fluid in the interstitial space. Overall, diffusion MR is a useful tool to evaluate glymphatic function and may serve as valuable translational biomarker to study glymphatics in human disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI