数学
平方自由整数
丢番图方程
模块化形式
Galois模块
辛几何
纯数学
平方(代数)
模数曲线
钥匙(锁)
域代数上的
离散数学
几何学
生态学
生物
作者
Franco Golfieri Madriaga,Ariel Pacetti,Lucas Villagra Torcomian
标识
DOI:10.1142/s1793042123500562
摘要
The purpose of this paper is to show how the modular method together with different techniques can be used to prove non-existence of primitive non-trivial solutions of the equation [Formula: see text] for square-free values [Formula: see text]. The key ingredients are: the approach presented in [A. Pacetti and L. V. Torcomian, [Formula: see text]-curves, Hecke characters and some Diophantine equations, Math. Comp. 91(338) (2022) 2817–2865] (in particular its recipe for the space of modular forms to be computed) together with the use of the symplectic method (as developed in [E. Halberstadt and A. Kraus, Courbes de Fermat: Résultats et problèmes, J. Reine Angew. Math. 548 (2002) 167–234], although we give a variant over ramified extensions needed in our applications) to discard solutions and the use of a second Frey curve, aiming to prove large image of residual Galois representations.
科研通智能强力驱动
Strongly Powered by AbleSci AI