China's carbon peaking and carbon neutrality goals present a significant challenge for coal chemical technology, which is critical to securing the energy structure. Combining coal chemical industry technology with new energy is an effective approach to transform the development of the coal chemical industry. This paper proposes and studies a novel coal-to-methanol (CTM) technology of gasification integrated solid oxide electrolysis cell (SOEC). SOEC electrolytic hydrogen production technology is an advanced electrolytic water technology with the advantages of large scale and high efficiency, which is very suitable to be combined with industrial technology and can solve the painful problem of H2 deficiency in the conventional coal to methanol process. In this study, from mechanistic analysis and model simulations, it is observed that by increasing the SOEC capacity, the novel CTM system can create more methanol at the same coal consumption and simultaneously reduce CO2 emissions. The novel CTM system can produce up to 2.2 times more methanol and reduce CO2 emissions by 94% by replacing the water-gas-shift (WGS) process with the SOEC unit. The novel CTM increases energy consumption. In addition, the novel CTM technology will effectively improve the economics of coal to methanol, taking into account the carbon tax. At the methanol price of 2900 RMB/t and SOEC capacity of 250 MW, the economic benefits of novel CTM were 2.1 times greater than CTM technology.