亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Drug vector representation and potential efficacy prediction based on graph representation learning and transcriptome data: Acacetin from traditional Chinese Medicine model

计算机科学 药物重新定位 特征学习 图形 人工智能 机器学习 阿卡汀 大数据 数据挖掘 药品 生物 理论计算机科学 药理学 抗氧化剂 芹菜素 类黄酮 生物化学
作者
Jianping Deng,Xin Liu,Yue Li,Shi-Hao Ni,Shu-Ning Sun,Xiao-Lu Ou-Yang,Xiaohan Ye,Lingjun Wang,Lu Lu
出处
期刊:Journal of Ethnopharmacology [Elsevier]
卷期号:305: 115966-115966 被引量:3
标识
DOI:10.1016/j.jep.2022.115966
摘要

Acacetin is widely distributed in traditional Chinese medicine and traditional herbs, with strong biological activity. Perhaps there are many potential effects that have not been explored. In the field of drug discovery, Mainstream methods focus on chemical structure. Traditional medicine cannot adapt to the mainstream prediction methods due to its complex composition.Our aim is that provide a prediction method more suitable for traditional medicine by graph representation learning and transcriptome data. And use this method to predict acacetin.Our method mainly consists of two parts. The first part is to use the method of graph representation learning to vectorize drugs as a database. The original data of this part comes from transcriptome data on Gene Expression Omnibus. The method of graph representation learning is an unsupervised learning. If there is no prior knowledge as the label data, the training effect cannot be analyzed. Therefore, we define a standard score to evaluate our results through the idea of Jaccard index. The second part is to put the target drug into our database. The potential similarity between drugs was evaluated by the Euclidean distance between vectors, and the potential efficacy of the target drug is predicted by combining the chemical-disease relationship data in the Comparative Toxicogenomics Database. The target drug in this paper uses acacetin. We compared the predicted results with existing reports, and we also experimentally verified the efficacy of improving insulin resistance in the predicted results.The prediction results are relatively consistent with the existing reports, which demonstrated that our method has a certain degree of predictive performance. And for the efficacy of improving insulin resistance in the predicted result, we verified it through experiments.We propose a method to predict the potential efficacy of drugs based on transcriptome data, using Graph representation learning, which is very suitable for traditional medicine. Through this method, we predicted the efficacy of acacetin, and the results are relatively consistent with the current reports. This provides a new idea for unsupervised learning to apply medical information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暮桉完成签到,获得积分20
1秒前
3秒前
ahui发布了新的文献求助10
3秒前
Ava应助暮桉采纳,获得10
5秒前
8秒前
科研小刘完成签到,获得积分10
8秒前
14秒前
爱科研的小周完成签到 ,获得积分10
17秒前
19秒前
明理的茹妖完成签到 ,获得积分10
19秒前
he完成签到 ,获得积分10
21秒前
22秒前
22秒前
23秒前
英俊的铭应助泡面小猪采纳,获得10
24秒前
勿昂完成签到 ,获得积分0
26秒前
韶纹发布了新的文献求助10
27秒前
愿祖国富强完成签到,获得积分20
27秒前
希望天下0贩的0应助韶纹采纳,获得10
34秒前
MMMgao完成签到 ,获得积分10
44秒前
忧伤的皮皮虾完成签到 ,获得积分10
47秒前
牛蛙丶丶完成签到,获得积分10
1分钟前
HS完成签到,获得积分10
1分钟前
1分钟前
lyzhou完成签到,获得积分10
1分钟前
1分钟前
lyzhou发布了新的文献求助10
1分钟前
shenhai发布了新的文献求助10
1分钟前
欢欢完成签到,获得积分10
1分钟前
1分钟前
song完成签到 ,获得积分10
1分钟前
1分钟前
不配.应助玛琳卡迪马采纳,获得20
1分钟前
1分钟前
ahui完成签到 ,获得积分10
1分钟前
宝宝完成签到 ,获得积分10
1分钟前
Bian完成签到,获得积分10
1分钟前
xue完成签到 ,获得积分10
1分钟前
joe完成签到 ,获得积分0
1分钟前
贪玩的谷芹完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136993
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784040
捐赠科研通 2444012
什么是DOI,文献DOI怎么找? 1299609
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989