Water Confinement by a Zn2+-Conductive Aqueous/Inorganic Hybrid Electrolyte for High-Voltage Zinc-Ion Batteries

阴极 电解质 阳极 水溶液 溶解 材料科学 无机化学 化学工程 化学 冶金 电极 工程类 物理化学
作者
Dejun Luo,Jing Wu,Xiaowei Chi,Yu Liu
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:6 (7): 3705-3713 被引量:1
标识
DOI:10.1021/acsaem.2c03617
摘要

Aqueous zinc-ion batteries (ZIBs) have received extensive attention owing to the intrinsic safety and high specific energy. However, the practical performance of the ZIBs is impacted by the water-induced complicated interfacial reactions, including the corrosion/dendrites of a Zn anode and the dissolution/degradation of a cathode. Herein, we developed a type of inorganic Zn2+-interlayered montmorillonite-based aqueous/inorganic hybrid electrolyte (ZM-30% HE) that not only realizes low water content but also shows a strong water confinement effect, which leads to a significantly weakened water activity and water solvation effect. Therefore, the side reactions between the Zn anode and free water molecules are effectively suppressed and the diffusion/insertion of zinc ions into the cathode is substantially facilitated. At the Zn anode side, ZM-30% HE can stabilize the symmetric cell for 2000 h at 1 mA cm–2. Moreover, low water content enables the application of the intercalation-type Zn-ion cathode. Based on the ZM-30% HE and Mn4[Fe(CN)6]2.84·11.8H2O cathode, record-high voltage (1.70 V vs Zn2+/Zn) and voltage efficiency (92%) among the reported Zn metal cells with hybrid electrolytes and Zn2+-storage cathodes were achieved. Meanwhile, the dissolution/degradation problem of the cathode in the traditional liquid electrolyte was solved using the HE. The Zn/ZM-30% HE/Mn4[Fe(CN)6]2.84·11.8H2O full cell shows stable cycling up to 400 cycles even at a low current density of 100 mA g–1. The development of the hybrid electrolyte with unique water confinement effect provides a solution to boost the performance of the current ZIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫时发布了新的文献求助10
1秒前
传奇3应助xhuryts采纳,获得10
1秒前
桐桐应助奋斗小鸽子采纳,获得10
1秒前
2秒前
友好若南发布了新的文献求助10
2秒前
2秒前
汉堡包应助张世豪采纳,获得10
2秒前
平常甜瓜完成签到 ,获得积分10
3秒前
Ning00000完成签到 ,获得积分10
3秒前
T012发布了新的文献求助10
3秒前
钟迪发布了新的文献求助10
4秒前
牛小牛发布了新的文献求助10
4秒前
4秒前
寻道图强应助xiaofei666采纳,获得50
6秒前
6秒前
可靠的书桃完成签到,获得积分10
6秒前
ZZRR发布了新的文献求助10
6秒前
jenny完成签到,获得积分10
7秒前
小二郎应助信仰采纳,获得30
7秒前
hhhh完成签到,获得积分10
7秒前
顺科研发布了新的文献求助10
7秒前
大个应助Litoivda采纳,获得10
7秒前
8秒前
科研通AI2S应助科研小呆瓜采纳,获得10
9秒前
颜三问发布了新的文献求助10
9秒前
9秒前
红果完成签到,获得积分10
12秒前
lll发布了新的文献求助30
12秒前
友好若南完成签到,获得积分10
12秒前
cocolu应助热心枕头采纳,获得10
12秒前
1111jfdasfkdanf完成签到 ,获得积分10
13秒前
超帅的以冬给超帅的以冬的求助进行了留言
13秒前
刘小豆完成签到,获得积分10
13秒前
哈哈哈哈啊哈完成签到,获得积分10
14秒前
牛小牛完成签到,获得积分10
14秒前
14秒前
怦怦应助Elian采纳,获得10
15秒前
15秒前
15秒前
喵酱完成签到,获得积分20
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309308
求助须知:如何正确求助?哪些是违规求助? 2942666
关于积分的说明 8510202
捐赠科研通 2617790
什么是DOI,文献DOI怎么找? 1430403
科研通“疑难数据库(出版商)”最低求助积分说明 664123
邀请新用户注册赠送积分活动 649286