强化学习
算法
趋同(经济学)
计算机科学
移动机器人
运动规划
理论(学习稳定性)
路径(计算)
网格
集合(抽象数据类型)
机器人
人工智能
机器学习
数学
几何学
经济
程序设计语言
经济增长
作者
Feng Qian,Kaiyue Du,Haosen Wang,Tiankai Chen,Xin Meng,Shifeng Wang,Bo Lü
标识
DOI:10.1109/itnec56291.2023.10082134
摘要
To solve the problems of slow convergence speed and poor stability of reinforcement learning method used on mobile robot for path planning tasks, an improved reinforcement leaning algorithm is proposed. In this paper, the algorithm allow the agent to move with 8 optional self-adapting directions. Also, we apply route expansion method to initialize the final route. Finally, we set dynamic exploration factor to accelerate the convergence of the final route. Simulation experiments undertaken on grid maps created by canvas indicates that the improved reinforcement learning can largely increase the speed of the convergence for the final path comparing to the classic Q-learning algorithm and A * algorithm, which has highly application value in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI