亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Boosting piezo-photocatalytic activity of BiVO4/BiFeO3 heterojunctions through built-in polarization field tailoring carrier transfer performances

光催化 异质结 材料科学 罗丹明B 压电 半导体 光电子学 极化(电化学) 纳米技术 复合材料 催化作用 化学 生物化学 物理化学
作者
Qinfang Jing,Zhiyong Liu,Xian Cheng,Cichun Li,Pengrong Ren,Kun Guo,Haojie Yue,Bing Xie,Ting Li,Zhiguo Wang,Longlong Shu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:464: 142617-142617 被引量:81
标识
DOI:10.1016/j.cej.2023.142617
摘要

The greatest challenge that limits the application of piezo-photocatalytic materials is the low separation efficiency of the generated electron-hole pairs, resulting in poor catalytic activity. Here, the semiconductor n-p heterojunctions BiVO4/BiFeO3 (BVO/BFO) were designed to enhance its piezo-photocatalytic processes. Under the excitation of piezo-vibration and the irradiation of visible light, the BVO/BFO heterojunctions exhibited ultra-high and stable piezo-photocatalytic performance with the degradation rate of Rhodamine B (RhB) solution up to 98 %, and its k value was 6.12 times than that of photocatalysis and 4.36 times than that of piezoelectric catalysis. Thanks to the n-type BVO nanoparticles with good crystallinity were uniformly distributed on the surface of the p-type piezoelectric material BFO, the built-in polarization field was formed and be advantageous to improve the carrier transport performances. A large electron diffusion coefficient (27.44 × 103 cm2·s−1), effective diffusion length (14.49 cm), and long electron lifetime (7.66 × 10-3 s) were achieved in the BVO/BFO heterojunctions, which played important roles to boost the piezo-photocatalytic activity. The preparation of BVO/BFO heterojunctions and their remarkable photo-piezoelectric properties provides a theoretical and practical reference for the development of efficient piezo-photocatalysis to apply in environmental remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Henvy完成签到,获得积分10
12秒前
12秒前
19秒前
22秒前
Lebpom发布了新的文献求助10
24秒前
29秒前
31秒前
yzm发布了新的文献求助10
34秒前
iDong完成签到 ,获得积分10
38秒前
大胆的碧菡完成签到,获得积分10
42秒前
Ava应助Lebpom采纳,获得10
45秒前
47秒前
48秒前
anne完成签到 ,获得积分10
48秒前
杨杨发布了新的文献求助10
52秒前
53秒前
54秒前
1分钟前
orixero应助杨杨采纳,获得10
1分钟前
852应助Amanda采纳,获得10
1分钟前
1分钟前
在水一方应助开放的乐蓉采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
隐形曼青应助Sunny采纳,获得10
1分钟前
1分钟前
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
星辰大海应助机灵的幼菱采纳,获得10
1分钟前
1分钟前
1分钟前
Sunny发布了新的文献求助10
1分钟前
Criminology34完成签到,获得积分0
1分钟前
Lebpom发布了新的文献求助10
1分钟前
1分钟前
1分钟前
大模型应助Lebpom采纳,获得10
2分钟前
2分钟前
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746562
求助须知:如何正确求助?哪些是违规求助? 5436195
关于积分的说明 15355651
捐赠科研通 4886597
什么是DOI,文献DOI怎么找? 2627322
邀请新用户注册赠送积分活动 1575805
关于科研通互助平台的介绍 1532538