An Ensemble Classification Model for Depression Based on Wearable Device Sleep Data

计算机科学 可穿戴计算机 人工智能 机器学习 稳健性(进化) 支持向量机 可穿戴技术 数据收集 缺少数据 噪音(视频) 数据建模 集合预报 数据库 生物化学 化学 统计 数学 图像(数学) 基因 嵌入式系统
作者
Yuzhu Hu,Jian Chen,Junxin Chen,Wei Wang,Shen Zhao,Xiping Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 2602-2612 被引量:10
标识
DOI:10.1109/jbhi.2023.3258601
摘要

Depression is one of the most common mental disorders, with sleep disturbances as typical symptoms. With the popularity of wearable devices increasing in recent years, more and more people wear portable devices to track sleep quality. Based on this, we believe that depression detection through wearable sleep data is more intelligent and economical. However, the majority of wearable devices face the problem of missing data during the data collection process. Otherwise, most existing studies of depression identification focus on the utilization of complex data, making it difficult to generalize and susceptible to noise interference. To address these issues, we propose a systematic ensemble classification model for depression (ECD). For the missing data problem of wearable devices, we design an improved GAIN method to further control the generation range of interpolated values, which can achieve a more reasonable treatment of missing values. Compared with the original GAIN approach, the improved method shows a 28.56% improvement when using MAE as the metric. For depression recognition, we use ensemble learning to construct a depression classification model which combines five classification models, including SVM, KNN, LR, CBR, and DT. Ensemble learning can improve the model's robustness and generalization. The voting mechanism is used in several places to improve noise immunity. The final classification model performed great on the dataset, with a precision of 92.55% and a recall of 91.89%. These results illustrate how efficient this method is in automatically detecting depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助英勇的刚采纳,获得10
1秒前
April发布了新的文献求助10
2秒前
MiManchi完成签到,获得积分10
4秒前
1806063938发布了新的文献求助10
4秒前
yunidesuuu完成签到,获得积分10
4秒前
usr12完成签到,获得积分10
4秒前
YAN77完成签到,获得积分10
4秒前
ccm应助稳重的不正采纳,获得10
5秒前
6秒前
7秒前
自信凤凰完成签到,获得积分10
7秒前
青青发布了新的文献求助10
8秒前
10秒前
maomao完成签到 ,获得积分20
11秒前
SchurrleHao发布了新的文献求助10
11秒前
12秒前
djdsg发布了新的文献求助10
12秒前
桐桐应助momo采纳,获得10
13秒前
嗨e完成签到,获得积分20
14秒前
14秒前
量子星尘发布了新的文献求助10
16秒前
llbeyond发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
18秒前
hb完成签到,获得积分10
19秒前
21秒前
22秒前
22秒前
22秒前
sunny心晴完成签到 ,获得积分10
23秒前
23秒前
丘比特应助xhj采纳,获得10
24秒前
科研垃圾完成签到,获得积分10
25秒前
25秒前
林夕少爷完成签到,获得积分10
25秒前
26秒前
guocan发布了新的文献求助10
27秒前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5102955
求助须知:如何正确求助?哪些是违规求助? 4313670
关于积分的说明 13441186
捐赠科研通 4141772
什么是DOI,文献DOI怎么找? 2269328
邀请新用户注册赠送积分活动 1272093
关于科研通互助平台的介绍 1208490