An Ensemble Classification Model for Depression Based on Wearable Device Sleep Data

计算机科学 可穿戴计算机 人工智能 机器学习 稳健性(进化) 支持向量机 可穿戴技术 数据收集 缺少数据 噪音(视频) 数据建模 集合预报 数据库 生物化学 化学 统计 数学 图像(数学) 基因 嵌入式系统
作者
Yuzhu Hu,Jian Chen,Junxin Chen,Wei Wang,Shen Zhao,Xiping Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 2602-2612 被引量:7
标识
DOI:10.1109/jbhi.2023.3258601
摘要

Depression is one of the most common mental disorders, with sleep disturbances as typical symptoms. With the popularity of wearable devices increasing in recent years, more and more people wear portable devices to track sleep quality. Based on this, we believe that depression detection through wearable sleep data is more intelligent and economical. However, the majority of wearable devices face the problem of missing data during the data collection process. Otherwise, most existing studies of depression identification focus on the utilization of complex data, making it difficult to generalize and susceptible to noise interference. To address these issues, we propose a systematic ensemble classification model for depression (ECD). For the missing data problem of wearable devices, we design an improved GAIN method to further control the generation range of interpolated values, which can achieve a more reasonable treatment of missing values. Compared with the original GAIN approach, the improved method shows a 28.56% improvement when using MAE as the metric. For depression recognition, we use ensemble learning to construct a depression classification model which combines five classification models, including SVM, KNN, LR, CBR, and DT. Ensemble learning can improve the model's robustness and generalization. The voting mechanism is used in several places to improve noise immunity. The final classification model performed great on the dataset, with a precision of 92.55% and a recall of 91.89%. These results illustrate how efficient this method is in automatically detecting depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助oldba采纳,获得10
刚刚
思源应助飘逸的凝荷采纳,获得10
1秒前
36456657应助djh采纳,获得10
2秒前
3秒前
slim完成签到,获得积分10
6秒前
yuming完成签到,获得积分10
7秒前
8R60d8应助Prayer采纳,获得10
8秒前
8秒前
zzzkyt发布了新的文献求助10
8秒前
yf完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
11秒前
思源应助ywqu采纳,获得10
11秒前
12秒前
研友_GZbO18完成签到,获得积分10
12秒前
领导范儿应助vivia采纳,获得10
13秒前
缓慢的冬云完成签到,获得积分10
14秒前
15秒前
mads发布了新的文献求助10
15秒前
单纯的不凡应助小于采纳,获得10
15秒前
16秒前
keyanniniz发布了新的文献求助10
17秒前
happyboy2008完成签到,获得积分10
17秒前
19秒前
21秒前
21秒前
21秒前
doctorshg完成签到,获得积分10
22秒前
guan发布了新的文献求助10
24秒前
25秒前
Jackson_Cai完成签到,获得积分10
25秒前
易安发布了新的文献求助30
25秒前
岁岁菌完成签到,获得积分10
26秒前
大个应助眼睛大的问儿采纳,获得10
27秒前
xixidong应助22222采纳,获得30
29秒前
30秒前
31秒前
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358209
求助须知:如何正确求助?哪些是违规求助? 2981312
关于积分的说明 8698714
捐赠科研通 2662949
什么是DOI,文献DOI怎么找? 1458188
科研通“疑难数据库(出版商)”最低求助积分说明 675060
邀请新用户注册赠送积分活动 666081