An Ensemble Classification Model for Depression Based on Wearable Device Sleep Data

计算机科学 可穿戴计算机 人工智能 机器学习 稳健性(进化) 支持向量机 可穿戴技术 数据收集 缺少数据 噪音(视频) 数据建模 集合预报 数据库 化学 嵌入式系统 图像(数学) 统计 基因 生物化学 数学
作者
Yuzhu Hu,Jian Chen,Junxin Chen,Wei Wang,Shen Zhao,Xiping Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 2602-2612 被引量:7
标识
DOI:10.1109/jbhi.2023.3258601
摘要

Depression is one of the most common mental disorders, with sleep disturbances as typical symptoms. With the popularity of wearable devices increasing in recent years, more and more people wear portable devices to track sleep quality. Based on this, we believe that depression detection through wearable sleep data is more intelligent and economical. However, the majority of wearable devices face the problem of missing data during the data collection process. Otherwise, most existing studies of depression identification focus on the utilization of complex data, making it difficult to generalize and susceptible to noise interference. To address these issues, we propose a systematic ensemble classification model for depression (ECD). For the missing data problem of wearable devices, we design an improved GAIN method to further control the generation range of interpolated values, which can achieve a more reasonable treatment of missing values. Compared with the original GAIN approach, the improved method shows a 28.56% improvement when using MAE as the metric. For depression recognition, we use ensemble learning to construct a depression classification model which combines five classification models, including SVM, KNN, LR, CBR, and DT. Ensemble learning can improve the model's robustness and generalization. The voting mechanism is used in several places to improve noise immunity. The final classification model performed great on the dataset, with a precision of 92.55% and a recall of 91.89%. These results illustrate how efficient this method is in automatically detecting depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冷酷鱼完成签到,获得积分10
1秒前
Owen应助牛牛采纳,获得10
1秒前
1秒前
1秒前
英俊水池发布了新的文献求助10
1秒前
1秒前
YY发布了新的文献求助10
1秒前
hucchongzi应助向阳采纳,获得10
2秒前
搜集达人应助Liu采纳,获得10
2秒前
嘟嘟完成签到,获得积分10
4秒前
5秒前
6秒前
艺术家发布了新的文献求助10
6秒前
6秒前
golden完成签到,获得积分10
7秒前
8秒前
彭于彦祖应助178181采纳,获得30
8秒前
上官若男应助要减肥的莛采纳,获得10
8秒前
9秒前
在水一方应助认真的火采纳,获得10
10秒前
10秒前
10秒前
凉凉盛夏完成签到,获得积分10
11秒前
11秒前
ykmykm完成签到,获得积分20
12秒前
Lemon发布了新的文献求助20
12秒前
12秒前
乏味发布了新的文献求助10
12秒前
小二郎应助YY采纳,获得10
13秒前
13秒前
从不内卷完成签到,获得积分10
13秒前
14秒前
自然馈赠发布了新的文献求助10
14秒前
14秒前
坦率的匪举报竹萱求助涉嫌违规
15秒前
马康辉发布了新的文献求助10
16秒前
SYLH应助沟通亿心采纳,获得10
16秒前
123发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113