An Ensemble Classification Model for Depression Based on Wearable Device Sleep Data

计算机科学 可穿戴计算机 人工智能 机器学习 稳健性(进化) 支持向量机 可穿戴技术 数据收集 缺少数据 噪音(视频) 数据建模 集合预报 数据库 生物化学 化学 统计 数学 图像(数学) 基因 嵌入式系统
作者
Yuzhu Hu,Jian Chen,Junxin Chen,Wei Wang,Shen Zhao,Xiping Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 2602-2612 被引量:10
标识
DOI:10.1109/jbhi.2023.3258601
摘要

Depression is one of the most common mental disorders, with sleep disturbances as typical symptoms. With the popularity of wearable devices increasing in recent years, more and more people wear portable devices to track sleep quality. Based on this, we believe that depression detection through wearable sleep data is more intelligent and economical. However, the majority of wearable devices face the problem of missing data during the data collection process. Otherwise, most existing studies of depression identification focus on the utilization of complex data, making it difficult to generalize and susceptible to noise interference. To address these issues, we propose a systematic ensemble classification model for depression (ECD). For the missing data problem of wearable devices, we design an improved GAIN method to further control the generation range of interpolated values, which can achieve a more reasonable treatment of missing values. Compared with the original GAIN approach, the improved method shows a 28.56% improvement when using MAE as the metric. For depression recognition, we use ensemble learning to construct a depression classification model which combines five classification models, including SVM, KNN, LR, CBR, and DT. Ensemble learning can improve the model's robustness and generalization. The voting mechanism is used in several places to improve noise immunity. The final classification model performed great on the dataset, with a precision of 92.55% and a recall of 91.89%. These results illustrate how efficient this method is in automatically detecting depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
善学以致用应助超级的鞅采纳,获得10
刚刚
猪猪hero应助elang采纳,获得10
1秒前
weiyi发布了新的文献求助10
2秒前
佩琪完成签到,获得积分10
2秒前
包容秋珊发布了新的文献求助10
2秒前
缥缈的涵菡完成签到 ,获得积分10
3秒前
冷酷的溜溜梅完成签到 ,获得积分10
3秒前
4秒前
kaikai完成签到,获得积分10
4秒前
鱼鱼鱼发布了新的文献求助10
4秒前
带善人完成签到,获得积分10
4秒前
5秒前
5秒前
科研通AI6应助zhangyulong采纳,获得10
5秒前
爆爆发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
小雨堂完成签到,获得积分10
7秒前
研友_VZG7GZ应助萝卜采纳,获得10
8秒前
8秒前
8秒前
hu123完成签到,获得积分10
9秒前
领导范儿应助DTS采纳,获得10
9秒前
9秒前
moyu37完成签到,获得积分10
9秒前
9秒前
10秒前
李xxxx发布了新的文献求助10
10秒前
愚林2024发布了新的文献求助10
10秒前
震动的雪一完成签到,获得积分10
10秒前
10秒前
10秒前
天天快乐应助weiyi采纳,获得10
11秒前
11秒前
JamesPei应助欢喜大地采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802