Multi-source domain transfer learning with small sample learning for thermal runaway diagnosis of lithium-ion battery

热失控 学习迁移 样品(材料) 电池(电) 锂(药物) 领域(数学分析) 锂离子电池 离子 计算机科学 核工程 工程类 化学 人工智能 物理 心理学 热力学 色谱法 数学 有机化学 功率(物理) 数学分析 精神科
作者
Chenchen Dong,Dashuai Sun
出处
期刊:Applied Energy [Elsevier BV]
卷期号:365: 123248-123248 被引量:2
标识
DOI:10.1016/j.apenergy.2024.123248
摘要

Data-driven thermal runaway diagnosis based on small amounts of thermal runaway data often struggles to produce satisfactory accuracy. However, in actual application scenarios, obtaining real thermal runaway data has a high cost. To this end, we propose a diagnostic method for multi-source domain transfer learning with few-shot learning (MDTL-FSL), which combines the ideas of small sample learning and adversarial learning. Use multiple different but related thermal runaway case data to obtain common diagnostic knowledge to achieve thermal runaway diagnosis. First of all, in order to avoid negative migration of the algorithm model caused by large differences in data distribution between multi-source domains, a data distribution difference measurement method under segmented pressure differences is proposed. This measurement method is simple and effective from multi-source domains. Select the source domain with a small difference in data distribution from the target domain. Secondly, the adversarial learning idea is integrated into multi-source domain transfer learning to learn temporal invariant features. Then, due to the small number of samples in each source domain in the multi-source domain under the thermal runaway scenario, a source domain reorganization mechanism was designed to find the decision boundary based on meta-learning ideas to achieve small-sample learning in the multi-source domain. Finally, we used cells produced by different battery manufacturers to trigger thermal runaway. By comparison and verification with other data-driven algorithms, the results show that the MDTL-FSL model proposed in this article has higher accuracy. At the same time, we use batteries of different types and capacities to trigger thermal runaway under different working conditions. The MDTL-FSL algorithm can issue early warnings before thermal runaway occurs, thereby effectively ensuring the safe operation of the energy storage system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yao6666完成签到,获得积分20
刚刚
1秒前
英俊的铭应助欣喜的伟泽采纳,获得10
1秒前
1秒前
2秒前
陈医生发布了新的文献求助10
3秒前
treasure23发布了新的文献求助20
3秒前
3秒前
3秒前
LYQ完成签到 ,获得积分10
4秒前
111111111发布了新的文献求助10
4秒前
JamesPei应助爱丽丝采纳,获得10
5秒前
杨老师发布了新的文献求助10
5秒前
5秒前
多情元灵发布了新的文献求助10
5秒前
朱佳宁发布了新的文献求助10
5秒前
6秒前
xxw发布了新的文献求助10
6秒前
木子完成签到 ,获得积分10
7秒前
SYLH应助monkey采纳,获得10
8秒前
哈哈哈哈发布了新的文献求助10
8秒前
老盖发布了新的文献求助10
8秒前
Silole发布了新的文献求助10
8秒前
9秒前
YifanWang应助彭三忘采纳,获得30
9秒前
hyc发布了新的文献求助20
11秒前
连九完成签到,获得积分10
11秒前
11秒前
洁净亦巧完成签到,获得积分10
11秒前
周杰发布了新的文献求助10
12秒前
13秒前
csy完成签到,获得积分10
14秒前
情怀应助cctv18采纳,获得10
14秒前
munantianxia发布了新的文献求助10
14秒前
剑指东方是为谁应助老盖采纳,获得10
15秒前
15秒前
lulala发布了新的文献求助10
15秒前
17秒前
orixero应助俭朴的期待采纳,获得10
17秒前
111111111完成签到,获得积分10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756330
求助须知:如何正确求助?哪些是违规求助? 3299628
关于积分的说明 10110826
捐赠科研通 3014214
什么是DOI,文献DOI怎么找? 1655401
邀请新用户注册赠送积分活动 789834
科研通“疑难数据库(出版商)”最低求助积分说明 753433