染色质
生物
细胞
基因组学
电池类型
基因调控网络
计算生物学
基因表达
表达数量性状基因座
人口
基因
神经科学
基因表达调控
遗传学
基因组
医学
单核苷酸多态性
环境卫生
基因型
作者
Prashant S. Emani,Jason J. Liu,Declan Clarke,Matthew L. Jensen,Jonathan Warrell,Chirag Gupta,Ran Meng,Cheyu Lee,Siwei Xu,Cagatay Dursun,Shaoke Lou,Yuhang Chen,Zhiyuan Chu,Timur R. Galeev,Ahyeon Hwang,Yunyang Li,Pengyu Ni,Xiao Zhou,Trygve E. Bakken,Jaroslav Bendl
标识
DOI:10.1101/2024.03.18.585576
摘要
Abstract Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet, little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multi-omics datasets into a resource comprising >2.8M nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550K cell-type-specific regulatory elements and >1.4M single-cell expression-quantitative-trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ∼250 disease-risk genes and drug targets with associated cell types. Summary Figure
科研通智能强力驱动
Strongly Powered by AbleSci AI