抗原
佐剂
肽
嵌合抗原受体
免疫
免疫学
免疫系统
肽疫苗
病毒学
医学
生物
免疫疗法
表位
生物化学
作者
Haifeng Pan,Siyuan Yu,Haoyun Zhuang,Han Yang,Jinlu Jiang,Haihui Yang,Shuling Ren,Guoxing Luo,Xuan Yu,Shuping Chen,Yanhua Lin,Roufang Sheng,Shiyin Zhang,Quan Yuan,Chenghao Huang,Tianying Zhang,Tingdong Li,Shengxiang Ge,Jun Zhang,Ningshao Xia
出处
期刊:Cancer immunology research
[American Association for Cancer Research]
日期:2024-04-17
卷期号:12 (7): 905-920
标识
DOI:10.1158/2326-6066.cir-23-0926
摘要
The intrinsic pharmacokinetic limitations of traditional peptide-based cancer vaccines hamper effective cross-presentation and codelivery of antigens (Ag) and adjuvants, which are crucial for inducing robust antitumor CD8+ T-cell responses. In this study, we report the development of a versatile strategy that simultaneously addresses the different pharmacokinetic challenges of soluble subunit vaccines composed of Ags and cytosine-guanosine oligodeoxynucleotide (CpG) to modulate vaccine efficacy via translating an engineered chimeric peptide, eTAT, as an intramolecular adjuvant. Linking Ags to eTAT enhanced cytosolic delivery of the Ags. This, in turn, led to improved activation and lymph node-trafficking of Ag-presenting cells and Ag cross-presentation, thus promoting Ag-specific T-cell immune responses. Simple mixing of eTAT-linked Ags and CpG significantly enhanced codelivery of Ags and CpG to the Ag-presenting cells, and this substantially augmented the adjuvant effect of CpG, maximized vaccine immunogenicity, and elicited robust and durable CD8+ T-cell responses. Vaccination with this formulation altered the tumor microenvironment and exhibited potent antitumor effects, with generally further enhanced therapeutic efficacy when used in combination with anti-PD1. Altogether, the engineered chimeric peptide-based orchestrated codelivery of Ag and adjuvant may serve as a promising but simple strategy to improve the efficacy of peptide-based cancer vaccines.
科研通智能强力驱动
Strongly Powered by AbleSci AI