Comprehensive Approach for Image Noise Analysis: Detection, Classification, Estimation, and Denoising

降噪 图像去噪 计算机科学 人工智能 模式识别(心理学) 噪音(视频) 估计 图像(数学) 计算机视觉 工程类 系统工程
作者
Rusul A. Al Mudhafar,Nidhal K. El Abbadi
出处
期刊:Lecture notes in networks and systems 卷期号:: 601-616
标识
DOI:10.1007/978-981-99-9562-2_50
摘要

Image noise is undesirable that can negatively affect the quality of digital images. It reduces the image quality and increases the processing failure ratio. It is highly recommended to remove the noise, and before removing the noise, we have to know the type of noise and estimate the parameters of noise for developing effective noise reduction techniques. This study introduces a method to effectively detect, recognize, and estimate image noise of various types (Gaussian, lognormal, Rayleigh, salt and pepper, and speckle). The proposed model consists of four stages: the first stage is detecting the noise in an image using a convolutional neural network. The second stage classifies the noisy images into one of five types of noise using a new method based on a combination of deep wavelets and support vector machines (SVM) classifier. The third stage involves estimating the parameters of the noise using maximum likelihood estimation (MLE). Finally, choosing the most suitable noise reduction technique for each type using linear and nonlinear filters and showing the capability of the suggested technique in estimating multiple noises commonly present in digital images. The proposed method utilizes a likelihood function derived from the MLE model for each noise type to estimate the noise parameters. Then used to select the most suitable noise reduction technique for each type. The quality of the denoised images is calculated utilizing the peak signal-to-noise ratio (PSNR) as the evaluation metric. The results show that the combination of wavelets with machine learning, specifically SVM, can highly enhance the results, where the accuracy was 93.043% through many experiments conducted to build a sturdy classification model. The MLE-based noise estimation method is also a reliable and accurate method for image noise estimation, especially for Gaussian, salt and pepper, lognormal, and Rayleigh noise. However, for highly noisy types such as speckle noise, further research is required to improve the estimation accuracy. This study contributes to the development of more effective noise estimation methods for improving the quality of digital images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZHAOyifan完成签到,获得积分10
1秒前
1秒前
ding应助qing_li采纳,获得10
2秒前
虚心八宝粥应助华哥采纳,获得10
2秒前
斌城发布了新的文献求助10
2秒前
空白发布了新的文献求助10
4秒前
KK完成签到,获得积分10
4秒前
4秒前
4秒前
朴素山兰发布了新的文献求助10
4秒前
5秒前
是江江哥啊完成签到,获得积分10
5秒前
科研通AI2S应助朽木采纳,获得10
5秒前
张怡凯完成签到 ,获得积分10
6秒前
Wang完成签到 ,获得积分20
6秒前
6秒前
欣慰人生发布了新的文献求助10
6秒前
wocala完成签到,获得积分10
6秒前
飞龙爵士发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
浮游应助浮浮世世采纳,获得10
8秒前
在水一方应助局内人采纳,获得10
9秒前
9秒前
10秒前
10秒前
11秒前
斌城完成签到,获得积分10
11秒前
11秒前
drs发布了新的文献求助10
11秒前
lizi发布了新的文献求助10
12秒前
12秒前
12秒前
GREENP完成签到,获得积分10
13秒前
梅倪发布了新的文献求助10
13秒前
善学以致用应助lmg采纳,获得10
13秒前
范欣雨发布了新的文献求助10
14秒前
M_完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329006
求助须知:如何正确求助?哪些是违规求助? 4468593
关于积分的说明 13905951
捐赠科研通 4361665
什么是DOI,文献DOI怎么找? 2395876
邀请新用户注册赠送积分活动 1389356
关于科研通互助平台的介绍 1360146