亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comprehensive Approach for Image Noise Analysis: Detection, Classification, Estimation, and Denoising

降噪 图像去噪 计算机科学 人工智能 模式识别(心理学) 噪音(视频) 估计 图像(数学) 计算机视觉 工程类 系统工程
作者
Rusul A. Al Mudhafar,Nidhal K. El Abbadi
出处
期刊:Lecture notes in networks and systems 卷期号:: 601-616
标识
DOI:10.1007/978-981-99-9562-2_50
摘要

Image noise is undesirable that can negatively affect the quality of digital images. It reduces the image quality and increases the processing failure ratio. It is highly recommended to remove the noise, and before removing the noise, we have to know the type of noise and estimate the parameters of noise for developing effective noise reduction techniques. This study introduces a method to effectively detect, recognize, and estimate image noise of various types (Gaussian, lognormal, Rayleigh, salt and pepper, and speckle). The proposed model consists of four stages: the first stage is detecting the noise in an image using a convolutional neural network. The second stage classifies the noisy images into one of five types of noise using a new method based on a combination of deep wavelets and support vector machines (SVM) classifier. The third stage involves estimating the parameters of the noise using maximum likelihood estimation (MLE). Finally, choosing the most suitable noise reduction technique for each type using linear and nonlinear filters and showing the capability of the suggested technique in estimating multiple noises commonly present in digital images. The proposed method utilizes a likelihood function derived from the MLE model for each noise type to estimate the noise parameters. Then used to select the most suitable noise reduction technique for each type. The quality of the denoised images is calculated utilizing the peak signal-to-noise ratio (PSNR) as the evaluation metric. The results show that the combination of wavelets with machine learning, specifically SVM, can highly enhance the results, where the accuracy was 93.043% through many experiments conducted to build a sturdy classification model. The MLE-based noise estimation method is also a reliable and accurate method for image noise estimation, especially for Gaussian, salt and pepper, lognormal, and Rayleigh noise. However, for highly noisy types such as speckle noise, further research is required to improve the estimation accuracy. This study contributes to the development of more effective noise estimation methods for improving the quality of digital images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TonyLee完成签到,获得积分10
38秒前
xt完成签到,获得积分10
48秒前
53秒前
CodeCraft应助科研通管家采纳,获得10
58秒前
BowieHuang应助科研通管家采纳,获得10
58秒前
BowieHuang应助科研通管家采纳,获得10
59秒前
阿尔法贝塔完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
nbing完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
幽默白秋发布了新的文献求助10
2分钟前
幽默白秋发布了新的文献求助10
2分钟前
幽默白秋发布了新的文献求助10
2分钟前
幽默白秋发布了新的文献求助10
2分钟前
幽默白秋发布了新的文献求助10
2分钟前
幽默白秋发布了新的文献求助10
2分钟前
幽默白秋发布了新的文献求助10
2分钟前
幽默白秋发布了新的文献求助10
2分钟前
幽默白秋发布了新的文献求助10
2分钟前
幽默白秋发布了新的文献求助10
2分钟前
2分钟前
yhw发布了新的文献求助10
2分钟前
2分钟前
SciGPT应助瘦瘦以亦采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
Lucas应助yhw采纳,获得10
3分钟前
3分钟前
瘦瘦以亦发布了新的文献求助10
3分钟前
奋斗思烟完成签到 ,获得积分10
3分钟前
Jasper应助中原第一深情采纳,获得10
4分钟前
4分钟前
半青一江发布了新的文献求助10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590568
求助须知:如何正确求助?哪些是违规求助? 4674814
关于积分的说明 14795358
捐赠科研通 4633182
什么是DOI,文献DOI怎么找? 2532808
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468723