Comprehensive Approach for Image Noise Analysis: Detection, Classification, Estimation, and Denoising

降噪 图像去噪 计算机科学 人工智能 模式识别(心理学) 噪音(视频) 估计 图像(数学) 计算机视觉 工程类 系统工程
作者
Rusul A. Al Mudhafar,Nidhal K. El Abbadi
出处
期刊:Lecture notes in networks and systems 卷期号:: 601-616
标识
DOI:10.1007/978-981-99-9562-2_50
摘要

Image noise is undesirable that can negatively affect the quality of digital images. It reduces the image quality and increases the processing failure ratio. It is highly recommended to remove the noise, and before removing the noise, we have to know the type of noise and estimate the parameters of noise for developing effective noise reduction techniques. This study introduces a method to effectively detect, recognize, and estimate image noise of various types (Gaussian, lognormal, Rayleigh, salt and pepper, and speckle). The proposed model consists of four stages: the first stage is detecting the noise in an image using a convolutional neural network. The second stage classifies the noisy images into one of five types of noise using a new method based on a combination of deep wavelets and support vector machines (SVM) classifier. The third stage involves estimating the parameters of the noise using maximum likelihood estimation (MLE). Finally, choosing the most suitable noise reduction technique for each type using linear and nonlinear filters and showing the capability of the suggested technique in estimating multiple noises commonly present in digital images. The proposed method utilizes a likelihood function derived from the MLE model for each noise type to estimate the noise parameters. Then used to select the most suitable noise reduction technique for each type. The quality of the denoised images is calculated utilizing the peak signal-to-noise ratio (PSNR) as the evaluation metric. The results show that the combination of wavelets with machine learning, specifically SVM, can highly enhance the results, where the accuracy was 93.043% through many experiments conducted to build a sturdy classification model. The MLE-based noise estimation method is also a reliable and accurate method for image noise estimation, especially for Gaussian, salt and pepper, lognormal, and Rayleigh noise. However, for highly noisy types such as speckle noise, further research is required to improve the estimation accuracy. This study contributes to the development of more effective noise estimation methods for improving the quality of digital images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐涛完成签到 ,获得积分10
3秒前
烟火会翻滚完成签到,获得积分10
3秒前
9秒前
那里北完成签到 ,获得积分10
9秒前
眼睛大的薯片完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
19秒前
Lily完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
25秒前
27秒前
冬无青山完成签到,获得积分10
31秒前
34秒前
量子星尘发布了新的文献求助10
35秒前
lx完成签到,获得积分10
40秒前
haochi完成签到,获得积分10
40秒前
薛得豪完成签到,获得积分10
42秒前
新楚完成签到 ,获得积分10
47秒前
49秒前
量子星尘发布了新的文献求助10
52秒前
53秒前
量子星尘发布了新的文献求助10
53秒前
美满的皮卡丘完成签到 ,获得积分10
54秒前
abab小王发布了新的文献求助10
56秒前
56秒前
欣欣完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
酷波er应助xiuxiu125采纳,获得10
1分钟前
AX完成签到,获得积分10
1分钟前
1分钟前
Neko完成签到,获得积分10
1分钟前
Solaris完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
崩溃完成签到,获得积分10
1分钟前
1分钟前
qmy完成签到 ,获得积分10
1分钟前
包容的忆灵完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2316690509完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671534
求助须知:如何正确求助?哪些是违规求助? 4919164
关于积分的说明 15134912
捐赠科研通 4830267
什么是DOI,文献DOI怎么找? 2587024
邀请新用户注册赠送积分活动 1540626
关于科研通互助平台的介绍 1498913