Comprehensive Approach for Image Noise Analysis: Detection, Classification, Estimation, and Denoising

降噪 图像去噪 计算机科学 人工智能 模式识别(心理学) 噪音(视频) 估计 图像(数学) 计算机视觉 工程类 系统工程
作者
Rusul A. Al Mudhafar,Nidhal K. El Abbadi
出处
期刊:Lecture notes in networks and systems 卷期号:: 601-616
标识
DOI:10.1007/978-981-99-9562-2_50
摘要

Image noise is undesirable that can negatively affect the quality of digital images. It reduces the image quality and increases the processing failure ratio. It is highly recommended to remove the noise, and before removing the noise, we have to know the type of noise and estimate the parameters of noise for developing effective noise reduction techniques. This study introduces a method to effectively detect, recognize, and estimate image noise of various types (Gaussian, lognormal, Rayleigh, salt and pepper, and speckle). The proposed model consists of four stages: the first stage is detecting the noise in an image using a convolutional neural network. The second stage classifies the noisy images into one of five types of noise using a new method based on a combination of deep wavelets and support vector machines (SVM) classifier. The third stage involves estimating the parameters of the noise using maximum likelihood estimation (MLE). Finally, choosing the most suitable noise reduction technique for each type using linear and nonlinear filters and showing the capability of the suggested technique in estimating multiple noises commonly present in digital images. The proposed method utilizes a likelihood function derived from the MLE model for each noise type to estimate the noise parameters. Then used to select the most suitable noise reduction technique for each type. The quality of the denoised images is calculated utilizing the peak signal-to-noise ratio (PSNR) as the evaluation metric. The results show that the combination of wavelets with machine learning, specifically SVM, can highly enhance the results, where the accuracy was 93.043% through many experiments conducted to build a sturdy classification model. The MLE-based noise estimation method is also a reliable and accurate method for image noise estimation, especially for Gaussian, salt and pepper, lognormal, and Rayleigh noise. However, for highly noisy types such as speckle noise, further research is required to improve the estimation accuracy. This study contributes to the development of more effective noise estimation methods for improving the quality of digital images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夸父完成签到,获得积分10
1秒前
mu完成签到,获得积分10
1秒前
小小酥发布了新的文献求助10
1秒前
2秒前
顺利的夜梦完成签到,获得积分10
3秒前
3秒前
3秒前
wanci应助ZeSheng采纳,获得10
6秒前
思源应助流星噬月采纳,获得10
6秒前
zzzxxx发布了新的文献求助10
7秒前
梨花完成签到,获得积分10
7秒前
bulabulabu完成签到,获得积分10
7秒前
zzz发布了新的文献求助10
7秒前
科研通AI2S应助孙朱珠采纳,获得10
8秒前
是盐的学术号吖完成签到 ,获得积分10
8秒前
小一完成签到,获得积分20
8秒前
脑洞疼应助xlx采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
谷歌狗发布了新的文献求助10
10秒前
zhu完成签到 ,获得积分10
11秒前
科研通AI2S应助yishufanhua采纳,获得10
11秒前
我是老大应助谨慎的沉鱼采纳,获得10
12秒前
酷波er应助小小酥采纳,获得10
12秒前
15秒前
15秒前
16秒前
16秒前
小柠檬完成签到,获得积分10
17秒前
17秒前
认真灯泡完成签到 ,获得积分20
17秒前
孟一完成签到,获得积分10
17秒前
慕青应助rrrryym采纳,获得30
18秒前
李爱国应助邹帅采纳,获得10
18秒前
英俊的铭应助胡胡采纳,获得10
19秒前
Ethereal发布了新的文献求助50
19秒前
秀丽的皮皮虾完成签到 ,获得积分10
20秒前
岩中花述发布了新的文献求助10
20秒前
20秒前
科研通AI6应助银鱼在游采纳,获得10
20秒前
温暖白容发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597169
求助须知:如何正确求助?哪些是违规求助? 4682435
关于积分的说明 14826266
捐赠科研通 4659721
什么是DOI,文献DOI怎么找? 2536464
邀请新用户注册赠送积分活动 1504138
关于科研通互助平台的介绍 1470139