Comprehensive Approach for Image Noise Analysis: Detection, Classification, Estimation, and Denoising

降噪 图像去噪 计算机科学 人工智能 模式识别(心理学) 噪音(视频) 估计 图像(数学) 计算机视觉 工程类 系统工程
作者
Rusul A. Al Mudhafar,Nidhal K. El Abbadi
出处
期刊:Lecture notes in networks and systems 卷期号:: 601-616
标识
DOI:10.1007/978-981-99-9562-2_50
摘要

Image noise is undesirable that can negatively affect the quality of digital images. It reduces the image quality and increases the processing failure ratio. It is highly recommended to remove the noise, and before removing the noise, we have to know the type of noise and estimate the parameters of noise for developing effective noise reduction techniques. This study introduces a method to effectively detect, recognize, and estimate image noise of various types (Gaussian, lognormal, Rayleigh, salt and pepper, and speckle). The proposed model consists of four stages: the first stage is detecting the noise in an image using a convolutional neural network. The second stage classifies the noisy images into one of five types of noise using a new method based on a combination of deep wavelets and support vector machines (SVM) classifier. The third stage involves estimating the parameters of the noise using maximum likelihood estimation (MLE). Finally, choosing the most suitable noise reduction technique for each type using linear and nonlinear filters and showing the capability of the suggested technique in estimating multiple noises commonly present in digital images. The proposed method utilizes a likelihood function derived from the MLE model for each noise type to estimate the noise parameters. Then used to select the most suitable noise reduction technique for each type. The quality of the denoised images is calculated utilizing the peak signal-to-noise ratio (PSNR) as the evaluation metric. The results show that the combination of wavelets with machine learning, specifically SVM, can highly enhance the results, where the accuracy was 93.043% through many experiments conducted to build a sturdy classification model. The MLE-based noise estimation method is also a reliable and accurate method for image noise estimation, especially for Gaussian, salt and pepper, lognormal, and Rayleigh noise. However, for highly noisy types such as speckle noise, further research is required to improve the estimation accuracy. This study contributes to the development of more effective noise estimation methods for improving the quality of digital images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
infinito发布了新的文献求助10
1秒前
2秒前
Lucas应助大晨采纳,获得10
2秒前
慕青应助冷静新烟采纳,获得10
3秒前
3秒前
aaa完成签到,获得积分10
3秒前
3秒前
SciGPT应助HJJHJH采纳,获得10
4秒前
4秒前
思源应助香蕉馒头采纳,获得10
4秒前
4秒前
glass_light发布了新的文献求助10
4秒前
cz发布了新的文献求助10
5秒前
5秒前
C_Note完成签到,获得积分10
5秒前
英吉利25发布了新的文献求助10
6秒前
深情安青应助curiouscc采纳,获得10
6秒前
朱欣宇完成签到,获得积分10
7秒前
不开心我的完成签到,获得积分20
7秒前
adam完成签到 ,获得积分10
7秒前
无语发布了新的文献求助10
7秒前
含蓄的孤丝完成签到,获得积分10
7秒前
8秒前
yanxuepig发布了新的文献求助30
8秒前
qqq完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助犹豫的天问采纳,获得10
9秒前
9秒前
suiyi完成签到,获得积分10
9秒前
小青椒应助大黎采纳,获得30
9秒前
从容飞阳发布了新的文献求助10
9秒前
小绵羊发布了新的文献求助10
10秒前
10秒前
Nancy完成签到,获得积分10
10秒前
10秒前
Maydalian发布了新的文献求助10
11秒前
12秒前
12秒前
雪崩完成签到,获得积分10
15秒前
Sebugaitei完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434739
求助须知:如何正确求助?哪些是违规求助? 4547066
关于积分的说明 14205914
捐赠科研通 4467159
什么是DOI,文献DOI怎么找? 2448413
邀请新用户注册赠送积分活动 1439364
关于科研通互助平台的介绍 1416076