Comprehensive Approach for Image Noise Analysis: Detection, Classification, Estimation, and Denoising

降噪 图像去噪 计算机科学 人工智能 模式识别(心理学) 噪音(视频) 估计 图像(数学) 计算机视觉 工程类 系统工程
作者
Rusul A. Al Mudhafar,Nidhal K. El Abbadi
出处
期刊:Lecture notes in networks and systems 卷期号:: 601-616
标识
DOI:10.1007/978-981-99-9562-2_50
摘要

Image noise is undesirable that can negatively affect the quality of digital images. It reduces the image quality and increases the processing failure ratio. It is highly recommended to remove the noise, and before removing the noise, we have to know the type of noise and estimate the parameters of noise for developing effective noise reduction techniques. This study introduces a method to effectively detect, recognize, and estimate image noise of various types (Gaussian, lognormal, Rayleigh, salt and pepper, and speckle). The proposed model consists of four stages: the first stage is detecting the noise in an image using a convolutional neural network. The second stage classifies the noisy images into one of five types of noise using a new method based on a combination of deep wavelets and support vector machines (SVM) classifier. The third stage involves estimating the parameters of the noise using maximum likelihood estimation (MLE). Finally, choosing the most suitable noise reduction technique for each type using linear and nonlinear filters and showing the capability of the suggested technique in estimating multiple noises commonly present in digital images. The proposed method utilizes a likelihood function derived from the MLE model for each noise type to estimate the noise parameters. Then used to select the most suitable noise reduction technique for each type. The quality of the denoised images is calculated utilizing the peak signal-to-noise ratio (PSNR) as the evaluation metric. The results show that the combination of wavelets with machine learning, specifically SVM, can highly enhance the results, where the accuracy was 93.043% through many experiments conducted to build a sturdy classification model. The MLE-based noise estimation method is also a reliable and accurate method for image noise estimation, especially for Gaussian, salt and pepper, lognormal, and Rayleigh noise. However, for highly noisy types such as speckle noise, further research is required to improve the estimation accuracy. This study contributes to the development of more effective noise estimation methods for improving the quality of digital images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虎虎虎完成签到,获得积分10
1秒前
李健的小迷弟应助Sun采纳,获得10
1秒前
潔思米完成签到,获得积分10
1秒前
打打应助健壮的夕阳采纳,获得10
1秒前
AN应助舒心白山采纳,获得100
1秒前
白茶完成签到,获得积分10
3秒前
TT2022发布了新的文献求助10
5秒前
安静的幻波完成签到,获得积分10
6秒前
7秒前
攀攀完成签到 ,获得积分10
10秒前
楠楠发布了新的文献求助10
11秒前
xh完成签到 ,获得积分10
12秒前
wanci应助优雅夏彤采纳,获得20
14秒前
共享精神应助小张要努力采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
遇上就这样吧应助小栗子采纳,获得60
16秒前
朴素的闭月完成签到,获得积分10
17秒前
17秒前
开放鸿涛应助清秀茹嫣采纳,获得10
20秒前
20秒前
22秒前
Sun发布了新的文献求助10
22秒前
月悦完成签到 ,获得积分10
24秒前
NingZH完成签到,获得积分10
24秒前
宝剑葫芦发布了新的文献求助10
26秒前
27秒前
明亮小凡完成签到 ,获得积分10
27秒前
呆萌雪晴发布了新的文献求助10
27秒前
jy完成签到,获得积分10
27秒前
ZSmile发布了新的文献求助30
27秒前
甜甜匪发布了新的文献求助10
29秒前
上官若男应助黄桃采纳,获得30
30秒前
shmily完成签到 ,获得积分10
30秒前
30秒前
追梦机完成签到,获得积分10
31秒前
善学以致用应助九章采纳,获得10
33秒前
跳跃的雪珊完成签到 ,获得积分10
33秒前
充电宝应助迅速的小天鹅采纳,获得10
33秒前
fdawn发布了新的文献求助10
34秒前
知行合一发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606280
求助须知:如何正确求助?哪些是违规求助? 4690702
关于积分的说明 14865203
捐赠科研通 4704558
什么是DOI,文献DOI怎么找? 2542558
邀请新用户注册赠送积分活动 1508054
关于科研通互助平台的介绍 1472241