Comprehensive Approach for Image Noise Analysis: Detection, Classification, Estimation, and Denoising

降噪 图像去噪 计算机科学 人工智能 模式识别(心理学) 噪音(视频) 估计 图像(数学) 计算机视觉 工程类 系统工程
作者
Rusul A. Al Mudhafar,Nidhal K. El Abbadi
出处
期刊:Lecture notes in networks and systems 卷期号:: 601-616
标识
DOI:10.1007/978-981-99-9562-2_50
摘要

Image noise is undesirable that can negatively affect the quality of digital images. It reduces the image quality and increases the processing failure ratio. It is highly recommended to remove the noise, and before removing the noise, we have to know the type of noise and estimate the parameters of noise for developing effective noise reduction techniques. This study introduces a method to effectively detect, recognize, and estimate image noise of various types (Gaussian, lognormal, Rayleigh, salt and pepper, and speckle). The proposed model consists of four stages: the first stage is detecting the noise in an image using a convolutional neural network. The second stage classifies the noisy images into one of five types of noise using a new method based on a combination of deep wavelets and support vector machines (SVM) classifier. The third stage involves estimating the parameters of the noise using maximum likelihood estimation (MLE). Finally, choosing the most suitable noise reduction technique for each type using linear and nonlinear filters and showing the capability of the suggested technique in estimating multiple noises commonly present in digital images. The proposed method utilizes a likelihood function derived from the MLE model for each noise type to estimate the noise parameters. Then used to select the most suitable noise reduction technique for each type. The quality of the denoised images is calculated utilizing the peak signal-to-noise ratio (PSNR) as the evaluation metric. The results show that the combination of wavelets with machine learning, specifically SVM, can highly enhance the results, where the accuracy was 93.043% through many experiments conducted to build a sturdy classification model. The MLE-based noise estimation method is also a reliable and accurate method for image noise estimation, especially for Gaussian, salt and pepper, lognormal, and Rayleigh noise. However, for highly noisy types such as speckle noise, further research is required to improve the estimation accuracy. This study contributes to the development of more effective noise estimation methods for improving the quality of digital images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美丹雪发布了新的文献求助10
2秒前
2秒前
苗条幻巧发布了新的文献求助10
3秒前
芒果芒果发布了新的文献求助10
3秒前
樱悼柳雪发布了新的文献求助10
3秒前
3秒前
花开的声音1217完成签到,获得积分10
4秒前
汉堡包应助bing采纳,获得30
4秒前
4秒前
4秒前
任性凤凰完成签到,获得积分10
4秒前
七慕凉发布了新的文献求助10
5秒前
小青椒应助yxb采纳,获得30
5秒前
嘉1612完成签到,获得积分10
6秒前
Rookie完成签到,获得积分20
6秒前
changping应助称心的语梦采纳,获得10
6秒前
7秒前
9秒前
9秒前
浮游应助苗条幻巧采纳,获得10
11秒前
11秒前
hyiyi完成签到,获得积分10
11秒前
服部平次完成签到,获得积分10
11秒前
ding应助任性凤凰采纳,获得10
11秒前
樱悼柳雪发布了新的文献求助10
11秒前
晴云发布了新的文献求助10
12秒前
12秒前
12秒前
科研小宋完成签到 ,获得积分10
12秒前
orixero应助陈子旋采纳,获得10
13秒前
13秒前
科研通AI6应助祁智博采纳,获得30
14秒前
宝宝鼠发布了新的文献求助10
15秒前
15秒前
爆米花应助plu采纳,获得10
15秒前
15秒前
1Yer6发布了新的文献求助10
17秒前
葉鳳怡完成签到 ,获得积分10
17秒前
打打应助221u采纳,获得10
17秒前
慕青应助李子衡采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4978990
求助须知:如何正确求助?哪些是违规求助? 4231777
关于积分的说明 13181128
捐赠科研通 4022598
什么是DOI,文献DOI怎么找? 2200899
邀请新用户注册赠送积分活动 1213349
关于科研通互助平台的介绍 1129556