Comprehensive Approach for Image Noise Analysis: Detection, Classification, Estimation, and Denoising

降噪 图像去噪 计算机科学 人工智能 模式识别(心理学) 噪音(视频) 估计 图像(数学) 计算机视觉 工程类 系统工程
作者
Rusul A. Al Mudhafar,Nidhal K. El Abbadi
出处
期刊:Lecture notes in networks and systems 卷期号:: 601-616
标识
DOI:10.1007/978-981-99-9562-2_50
摘要

Image noise is undesirable that can negatively affect the quality of digital images. It reduces the image quality and increases the processing failure ratio. It is highly recommended to remove the noise, and before removing the noise, we have to know the type of noise and estimate the parameters of noise for developing effective noise reduction techniques. This study introduces a method to effectively detect, recognize, and estimate image noise of various types (Gaussian, lognormal, Rayleigh, salt and pepper, and speckle). The proposed model consists of four stages: the first stage is detecting the noise in an image using a convolutional neural network. The second stage classifies the noisy images into one of five types of noise using a new method based on a combination of deep wavelets and support vector machines (SVM) classifier. The third stage involves estimating the parameters of the noise using maximum likelihood estimation (MLE). Finally, choosing the most suitable noise reduction technique for each type using linear and nonlinear filters and showing the capability of the suggested technique in estimating multiple noises commonly present in digital images. The proposed method utilizes a likelihood function derived from the MLE model for each noise type to estimate the noise parameters. Then used to select the most suitable noise reduction technique for each type. The quality of the denoised images is calculated utilizing the peak signal-to-noise ratio (PSNR) as the evaluation metric. The results show that the combination of wavelets with machine learning, specifically SVM, can highly enhance the results, where the accuracy was 93.043% through many experiments conducted to build a sturdy classification model. The MLE-based noise estimation method is also a reliable and accurate method for image noise estimation, especially for Gaussian, salt and pepper, lognormal, and Rayleigh noise. However, for highly noisy types such as speckle noise, further research is required to improve the estimation accuracy. This study contributes to the development of more effective noise estimation methods for improving the quality of digital images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Hello应助XINWU采纳,获得10
2秒前
QDU应助如意伟诚采纳,获得20
3秒前
彭于晏应助lxz采纳,获得10
3秒前
4秒前
Ieklos完成签到,获得积分10
4秒前
nihao完成签到,获得积分20
4秒前
xx发布了新的文献求助10
4秒前
qqqq完成签到,获得积分10
5秒前
6秒前
爆米花应助屈春洋采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
圆锥香蕉应助科研通管家采纳,获得20
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
8秒前
华仔应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
曾无忧应助科研通管家采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
敬老院N号应助科研通管家采纳,获得30
9秒前
WJH应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
Lny应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
6666应助科研通管家采纳,获得10
10秒前
10秒前
juqiu发布了新的文献求助10
10秒前
强扭的瓜完成签到,获得积分10
10秒前
大梦想家完成签到,获得积分10
12秒前
orixero应助王i采纳,获得10
13秒前
wanci应助juqiu采纳,获得10
13秒前
美丽的如彤完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867