Construction of cotton leaf nitrogen content estimation model based on the PROSPECT model

氮气 估计 环境科学 内容(测量理论) 统计 农业工程 计量经济学 数学 工程类 化学 系统工程 数学分析 有机化学
作者
Feng Xu,Yiren Ding,Shizhe Qin,Hongyu Wang,Lu Wang,Yiru MA,Xin Lv,Ze Zhang,Bing Chen
出处
期刊:Notulae Botanicae Horti Agrobotanici Cluj-napoca 卷期号:52 (1): 13565-13565
标识
DOI:10.15835/nbha52113565
摘要

Leaf nitrogen content (LNC) is an important index to measure the nitrogen deficiency in cotton. The rapid and accurate monitoring of LNC is of great significance for understanding the growth status of cotton and guiding precise fertilization in the field. At present, the hyperspectral technology monitoring of LNC is very mature, but it is interfered with by external factors such as shadow and soil, and data acquisition is still dependent on manpower. Therefore, on the basis of clarifying the correlation and quantitative relationship between physiological parameters and cotton LNC, the 400-2500 nm spectral curve was simulated based on PROSPECT-5 model. Combined with the measured spectra, the sensitive bands of leaf nitrogen content were screened, and four machine learning algorithms based on the reflectance of the sensitive bands were compared to construct a model for the estimation of LNC in cotton and determine the optimal model. The results show the following: (1) The parameter with the best correlation with nitrogen content was Cab, and the linear relationship was y=0.3942x+12.521, R2=0.81, RMSE=12.87 g/kg. (2) The shuffled frog leaping algorithm (SFLA) and the successive projections algorithm (SPA) were used to screen the relevant bands sensitive to LNC. SFLA selected nine characteristic bands, mainly distributed between 700 and 750 nm. SPA screened seven characteristic bands, mainly distributed between 670 and 760 nm. The characteristic bands of both screening methods were distributed near the red edge. (3) Based on the sensitive bands, the four machine learning algorithms were compared. Among them, the band modeling of SFLA screening under the random forest (RF) algorithm was the best (modeling set R2=0.973, RMSE=1.001 g/kg, rRMSE=3.41%, validation set R2=0.803, RMSE=3.191 g/kg, rRMSE=10.85%). In summary, this study proposes an optimal estimation model of cotton leaf nitrogen content based on the radiative transfer model, which provides a theoretical basis for the dynamic, accurate, and non-destructive monitoring of cotton leaf nitrogen content.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
医药点完成签到,获得积分20
刚刚
刚刚
jackycas发布了新的文献求助10
1秒前
花开花落发布了新的文献求助10
1秒前
笑点低的幼旋完成签到,获得积分10
2秒前
zeroayanami0发布了新的文献求助10
3秒前
功不唐捐发布了新的文献求助10
3秒前
WHY发布了新的文献求助10
4秒前
左眼天堂完成签到,获得积分10
4秒前
yinlao完成签到,获得积分10
4秒前
小马一家发布了新的文献求助10
7秒前
YangJie完成签到,获得积分10
7秒前
饕餮1235完成签到,获得积分10
7秒前
9秒前
买菜市民熊先生完成签到,获得积分10
9秒前
11秒前
11秒前
碧蓝初丹完成签到,获得积分20
11秒前
张再禹完成签到,获得积分10
12秒前
鲤鱼奇异果完成签到,获得积分10
12秒前
12秒前
一枝完成签到 ,获得积分10
13秒前
14秒前
Jasper应助小马一家采纳,获得10
14秒前
香蕉觅云应助iuv采纳,获得10
15秒前
乙酸乙酯会挥发完成签到,获得积分10
16秒前
碧蓝初丹发布了新的文献求助30
17秒前
jackycas完成签到,获得积分10
17秒前
研友_LjDyNZ发布了新的文献求助10
18秒前
盐盐完成签到 ,获得积分10
20秒前
20秒前
21秒前
22秒前
hh发布了新的文献求助10
22秒前
more应助jack采纳,获得30
23秒前
hehehe完成签到,获得积分10
23秒前
iuv完成签到,获得积分10
24秒前
25秒前
25秒前
个性的紫菜应助再见梧桐采纳,获得10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159900
求助须知:如何正确求助?哪些是违规求助? 2810945
关于积分的说明 7889920
捐赠科研通 2469918
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630768
版权声明 602012