Multimodal MRI Brain Tumor Segmentation: Enhancing Detailed Features and Multimodal Information

模式治疗法 计算机科学 分割 人工智能 心理学 心理治疗师
作者
Xiufeng Zhang,Yunfei Jiang,Yan‐Song Liu,Shichen Zhang,Tian Lingzhuo
标识
DOI:10.2139/ssrn.4801992
摘要

Brain tumor segmentation in multimodal MRI images is crucial for clinical diagnosis and treatment. However, the location of the lesion area is uncertain and the edge blur is very prominent in the image performance, so automated segmentation faces huge challenges. Currently, most brain tumor segmentation methods make insufficient use of multi-modal information and do not describe edges well, resulting in low segmentation accuracy. To this end, this paper proposes a multi-modal MRI brain tumor segmentation method based on deep learning. This method uses a deep neural network for training, making full use of the complementarity and difference of multi-modal information, paying special attention to the edges and details of the tumor, and providing a global receptive field through the attention mechanism to focus on the location information of the tumor. This network model enhances tumor localization, extraction of edge detail features, utilization of multi-modal information, and filtering of redundant information. Our method is validated on the dataset of the Brain Tumor Segmentation Challenge, and experimental results show that our method has superior performance compared to many advanced brain tumor segmentation methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
我的miemie完成签到,获得积分10
1秒前
6秒前
6秒前
Eternitymaria完成签到,获得积分10
7秒前
10秒前
10秒前
10秒前
11秒前
Ta完成签到,获得积分10
12秒前
12秒前
13秒前
JamesPei应助Lucille采纳,获得10
15秒前
orang发布了新的文献求助10
15秒前
16秒前
飞飞完成签到 ,获得积分10
16秒前
淡淡的香发布了新的文献求助30
18秒前
英俊的铭应助猪猪hero采纳,获得10
19秒前
情怀应助wq采纳,获得10
19秒前
20秒前
量子星尘发布了新的文献求助10
23秒前
猫小乐C完成签到,获得积分10
23秒前
23秒前
整齐灵阳完成签到,获得积分10
26秒前
充电宝应助机智的含蕾采纳,获得30
28秒前
lewis17发布了新的文献求助30
28秒前
29秒前
老神在在完成签到,获得积分10
30秒前
adi完成签到,获得积分10
32秒前
阳光he完成签到,获得积分10
32秒前
33秒前
0814d完成签到,获得积分10
33秒前
33秒前
233完成签到,获得积分10
34秒前
徐州檀完成签到,获得积分10
34秒前
35秒前
田様应助orang采纳,获得10
35秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954395
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099177
捐赠科研通 3230855
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801673