材料科学
胶粘剂
冠醚
超分子化学
超分子聚合物
离子键合
氢键
聚乙二醇
聚合物
溶剂
范德瓦尔斯力
乙醚
高分子化学
化学工程
复合材料
有机化学
分子
离子
化学
图层(电子)
工程类
作者
Hao Ju,Zhaoliang Yin,Zoriana Demchuk,Vera Bocharova,Catalin Gainaru,Jeffrey A. Laub,Konstantinos D. Vogiatzis,Rigoberto C. Advíncula,Jiayao Chen,Pengfei Cao
标识
DOI:10.1002/adfm.202402165
摘要
Abstract Supramolecular adhesives are attracting considerable attentions owing to their dynamic and reversible bonding, while the complex curing conditions and poor performance under extreme conditions severely restrict their applicability. Herein, a series of tetra‐crown ether‐terminated polyethylene glycol (TCE‐PEG) adhesives are presented in which plenty of supramolecular interactions, including Van der Waals, hydrogen bonding, π–π staking, metal coordination, and electrostatic ones, provide strong adhesion on multiple types of substrates. Highly relevant for practical applications, ultra‐strong adhesivity of TCE‐PEG can be achieved without requiring additional ultraviolet radiation, heat, or chemical treatment at ambient temperature. It also exhibits durable adhesive behavior, excellent underwater stability, and low‐temperature tolerance. Especially, by incorporating ionic polymer fragments of polyethyleneimine hydrochloride, additional hydrogen bonding between secondary amines and crown ether rings can be induced to enhance the lap‐shear strength to 7.21 MPa due to the formation of supramolecular cross‐linked network. This work pioneers a rather unique supramolecular approach for easily formed, ultra‐strong crown‐ether‐based adhesives bearing great potential for applications in critical environments of limited heat source and unallowed solvent usage.
科研通智能强力驱动
Strongly Powered by AbleSci AI