Improving the detection accuracy of the dual SERS aptasensor system with uncontrollable SERS “hot spot” using machine learning tools

化学 拉曼散射 对偶(语法数字) 纳米技术 人工智能 拉曼光谱 计算机科学 光学 文学类 艺术 材料科学 物理
作者
Junlin Chen,Hong Lin,Minqiang Guo,Limin Cao,Jianxin Sui,Kaiqiang Wang
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1307: 342631-342631 被引量:20
标识
DOI:10.1016/j.aca.2024.342631
摘要

Simultaneous detection of food contaminants is crucial in addressing the collective health hazards arising from the presence of multiple contaminants. However, traditional multi-competitive surface-enhanced Raman scattering (SERS) aptasensors face difficulties in achieving simultaneous accurate detection of multiple target substances due to the uncontrollable SERS "hot spot". In this study, using chloramphenicol (CAP) and estradiol (E2) as two target substances, we introduced a novel approach that combines machine learning methods with a dual SERS aptasensor, enabling simultaneous high-sensitivity and accurate detection of both target substances. The strategy effectively minimizes the interference from characteristic Raman peaks commonly encountered in traditional multi-competitive SERS aptasensors. For this sensing system, the Au@4-MBA@Ag nanoparticles modified with sulfhydryl (SH)-CAP aptamer and Au@DTNB@Ag NPs modified with sulfhydryl (SH)-E2 aptamer were used as signal probes. Additionally, Fe3O4@Au nanoflowers integrated with SH-CAP aptamer complementary DNA and SH-E2 aptamer complementary DNA were used as capture probes, respectively. When compared to linear regression random forest, and support vector regression (SVR) models, the proposed artificial neural network (ANN) model exhibited superior precision, demonstrating R2 values of 0.963, 0.976, 0.991, and 0.970 for the training set, test set, validation set, and entire dataset, respectively. Validation with ten spectral groups reported an average error of 244 μg L-1. The essence of our study lies in its capacity to address a persistent challenge encountered by traditional multiple competitive SERS aptasensors – the interference generated by uncontrollable SERS "hot spot" that hinders simultaneous quantification. The accuracy of the predictive model for simultaneous detection of two target substances was significantly improved using machine learning tools. This innovative technique offers promising avenues for the accurate and high-sensitive simultaneous detection of multiple food and environment contaminants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
星星完成签到,获得积分10
1秒前
baobaoxiong发布了新的文献求助10
1秒前
1秒前
bkagyin应助萤火未央采纳,获得30
1秒前
xiaowang发布了新的文献求助10
1秒前
2秒前
小小台yeah发布了新的文献求助10
2秒前
2秒前
2025121539完成签到,获得积分10
3秒前
余三心完成签到,获得积分10
3秒前
4秒前
llle完成签到,获得积分10
5秒前
孝顺的紫完成签到 ,获得积分10
5秒前
forever完成签到,获得积分20
5秒前
Koalas应助缓慢的灵枫采纳,获得10
6秒前
Ava应助LHT采纳,获得10
6秒前
余三心发布了新的文献求助10
6秒前
文文发布了新的文献求助10
7秒前
桐桐应助玥来玥好采纳,获得10
7秒前
星星发布了新的文献求助10
7秒前
斯文败类应助纸张猫猫采纳,获得10
7秒前
暮满杉完成签到,获得积分20
8秒前
8秒前
Jimmy完成签到,获得积分10
8秒前
完美世界应助xiaowang采纳,获得10
8秒前
宋二庆发布了新的文献求助10
8秒前
张张发布了新的文献求助10
8秒前
刘显波完成签到,获得积分10
11秒前
gapper完成签到 ,获得积分10
11秒前
小马甲应助攸宁采纳,获得10
11秒前
顾矜应助shishikai采纳,获得10
12秒前
李健的小迷弟应助慎独579采纳,获得10
12秒前
hmhu完成签到,获得积分10
13秒前
Yuan.完成签到,获得积分10
13秒前
会飞的史迪奇关注了科研通微信公众号
14秒前
14秒前
blessing发布了新的文献求助10
14秒前
大模型应助蓝莓小蛋糕采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589279
求助须知:如何正确求助?哪些是违规求助? 4674065
关于积分的说明 14791491
捐赠科研通 4628070
什么是DOI,文献DOI怎么找? 2532220
邀请新用户注册赠送积分活动 1500838
关于科研通互助平台的介绍 1468437