Improving the detection accuracy of the dual SERS aptasensor system with uncontrollable SERS “hot spot” using machine learning tools

化学 拉曼散射 对偶(语法数字) 纳米技术 人工智能 拉曼光谱 计算机科学 光学 物理 文学类 艺术 材料科学
作者
Junlin Chen,Hong Lin,Minqiang Guo,Limin Cao,Jianxin Sui,Kaiqiang Wang
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1307: 342631-342631 被引量:20
标识
DOI:10.1016/j.aca.2024.342631
摘要

Simultaneous detection of food contaminants is crucial in addressing the collective health hazards arising from the presence of multiple contaminants. However, traditional multi-competitive surface-enhanced Raman scattering (SERS) aptasensors face difficulties in achieving simultaneous accurate detection of multiple target substances due to the uncontrollable SERS "hot spot". In this study, using chloramphenicol (CAP) and estradiol (E2) as two target substances, we introduced a novel approach that combines machine learning methods with a dual SERS aptasensor, enabling simultaneous high-sensitivity and accurate detection of both target substances. The strategy effectively minimizes the interference from characteristic Raman peaks commonly encountered in traditional multi-competitive SERS aptasensors. For this sensing system, the Au@4-MBA@Ag nanoparticles modified with sulfhydryl (SH)-CAP aptamer and Au@DTNB@Ag NPs modified with sulfhydryl (SH)-E2 aptamer were used as signal probes. Additionally, Fe3O4@Au nanoflowers integrated with SH-CAP aptamer complementary DNA and SH-E2 aptamer complementary DNA were used as capture probes, respectively. When compared to linear regression random forest, and support vector regression (SVR) models, the proposed artificial neural network (ANN) model exhibited superior precision, demonstrating R2 values of 0.963, 0.976, 0.991, and 0.970 for the training set, test set, validation set, and entire dataset, respectively. Validation with ten spectral groups reported an average error of 244 μg L-1. The essence of our study lies in its capacity to address a persistent challenge encountered by traditional multiple competitive SERS aptasensors – the interference generated by uncontrollable SERS "hot spot" that hinders simultaneous quantification. The accuracy of the predictive model for simultaneous detection of two target substances was significantly improved using machine learning tools. This innovative technique offers promising avenues for the accurate and high-sensitive simultaneous detection of multiple food and environment contaminants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助Jiaox采纳,获得10
刚刚
aoi发布了新的文献求助30
1秒前
雪山飞龙发布了新的文献求助10
2秒前
Felix完成签到 ,获得积分10
2秒前
2秒前
awang完成签到,获得积分10
2秒前
111应助月兮2013采纳,获得10
3秒前
芋圆发布了新的文献求助10
4秒前
lyy完成签到 ,获得积分10
4秒前
5秒前
JamesPei应助phil采纳,获得10
5秒前
6秒前
6秒前
闹闹加油发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
Yang发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
Dr_Zhan完成签到 ,获得积分10
9秒前
Leelelele应助zanzan采纳,获得10
10秒前
12秒前
13秒前
无花果应助真真正正采纳,获得10
15秒前
zyb完成签到 ,获得积分10
16秒前
17秒前
Jiaox发布了新的文献求助10
18秒前
18秒前
19秒前
沉默的倔驴应助Yang采纳,获得10
19秒前
孙靖博发布了新的文献求助10
19秒前
李健的粉丝团团长应助nn采纳,获得10
21秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
温wenwen发布了新的文献求助10
21秒前
十一发布了新的文献求助10
23秒前
雪山飞龙发布了新的文献求助10
23秒前
24秒前
Re完成签到,获得积分20
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5786859
求助须知:如何正确求助?哪些是违规求助? 5696278
关于积分的说明 15470826
捐赠科研通 4915556
什么是DOI,文献DOI怎么找? 2645833
邀请新用户注册赠送积分活动 1593523
关于科研通互助平台的介绍 1547863