已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MEG-PPIS: a fast protein–protein interaction site prediction method based on multi-scale graph information and equivariant graph neural network

计算机科学 图形 人工神经网络 人工智能 数据挖掘 理论计算机科学
作者
Hongzhen Ding,Xue Li,Peifu Han,Tian Xu,Fengrui Jing,Shuang Wang,Tao Song,Hanjiao Fu,Na Young Kang
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:40 (5)
标识
DOI:10.1093/bioinformatics/btae269
摘要

Motivation Protein–protein interaction sites (PPIS) are crucial for deciphering protein action mechanisms and related medical research, which is the key issue in protein action research. Recent studies have shown that graph neural networks have achieved outstanding performance in predicting PPIS. However, these studies often neglect the modeling of information at different scales in the graph and the symmetry of protein molecules within three-dimensional space. Results In response to this gap, this article proposes the MEG-PPIS approach, a PPIS prediction method based on multi-scale graph information and E(n) equivariant graph neural network (EGNN). There are two channels in MEG-PPIS: the original graph and the subgraph obtained by graph pooling. The model can iteratively update the features of the original graph and subgraph through the weight-sharing EGNN. Subsequently, the max-pooling operation aggregates the updated features of the original graph and subgraph. Ultimately, the model feeds node features into the prediction layer to obtain prediction results. Comparative assessments against other methods on benchmark datasets reveal that MEG-PPIS achieves optimal performance across all evaluation metrics and gets the fastest runtime. Furthermore, specific case studies demonstrate that our method can predict more true positive and true negative sites than the current best method, proving that our model achieves better performance in the PPIS prediction task. Availability and implementation The data and code are available at https://github.com/dhz234/MEG-PPIS.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上进生完成签到,获得积分10
1秒前
NPC应助xibei采纳,获得20
2秒前
毛豆应助blackcatcaptain采纳,获得10
3秒前
buno发布了新的文献求助10
5秒前
领导范儿应助TongMan采纳,获得10
7秒前
上进生发布了新的文献求助10
7秒前
7秒前
9秒前
11秒前
北风发布了新的文献求助10
12秒前
14秒前
NexusExplorer应助passion采纳,获得10
15秒前
Owen应助冷静的鼠标采纳,获得30
17秒前
晓晓完成签到,获得积分10
19秒前
19秒前
SciGPT应助活力妙彤采纳,获得10
25秒前
冷静的鼠标完成签到,获得积分10
29秒前
xiaobai发布了新的文献求助10
29秒前
29秒前
30秒前
大个应助北风采纳,获得10
30秒前
jjj完成签到 ,获得积分10
32秒前
34秒前
34秒前
35秒前
煞笔导去死啊完成签到,获得积分10
35秒前
11发布了新的文献求助10
35秒前
jjj关注了科研通微信公众号
35秒前
氧气橘子完成签到,获得积分10
35秒前
迷路绿凝完成签到,获得积分10
36秒前
呦吼。。。完成签到,获得积分10
38秒前
passion发布了新的文献求助10
38秒前
酷波er应助CK采纳,获得10
38秒前
zackf完成签到,获得积分10
39秒前
40秒前
bible完成签到,获得积分10
41秒前
44秒前
buno完成签到,获得积分0
44秒前
47秒前
hygge完成签到,获得积分10
48秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307115
求助须知:如何正确求助?哪些是违规求助? 2940891
关于积分的说明 8499299
捐赠科研通 2615068
什么是DOI,文献DOI怎么找? 1428618
科研通“疑难数据库(出版商)”最低求助积分说明 663482
邀请新用户注册赠送积分活动 648318