Theoretical Insights into the Reaction Mechanism of Direct Hydrogenation of Maleic Anhydride to Produce 1,4-Butanediol on the Cu–ZnO Surface

马来酸酐 四氢呋喃 琥珀酸酐 1,4-丁二醇 催化作用 化学 反应机理 单体 有机化学 材料科学 共聚物 聚合物 溶剂
作者
Xinyue Guan,Yingzhe Yu,Minhua Zhang
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:14 (9): 6488-6502 被引量:7
标识
DOI:10.1021/acscatal.4c00745
摘要

1,4-Butanediol is a crucial monomer for the production of biodegradable plastics such as polybutylene succinate (PBS) and polybutyleneadipate-co-terephthalate (PBAT). It is also utilized in the synthesis of derivatives such as γ-butyrolactone and tetrahydrofuran. The technology of direct hydrogenation of maleic anhydride to produce 1,4-butanediol on Cu-based catalysts has gained significant attention due to its short process, mild reaction conditions, cost-effective catalysts, and the ability to cogenerate various products. This makes it a promising avenue for the production of 1,4-butanediol. At present, the reaction mechanism for the direct hydrogenation of maleic anhydride to produce 1,4-butanediol on Cu–ZnO is not well understood, and the types and pathways of byproducts remain unclear. This lack of clarity hinders the modification and application of catalysts for the direct hydrogenation of maleic anhydride to produce 1,4-butanediol. This study systematically investigates the reaction mechanism of direct hydrogenation of maleic anhydride to produce 1,4-butanediol on Cu–ZnO using spin-polarized density functional theory. The adsorption properties of surface species were studied, revealing that key species succinic anhydride, γ-butyrolactone, 1,4-butanediol, tetrahydrofuran, and n-butanol exhibit more stability in adsorption at the Cu211–ZnO interface compared to noninterface regions. The optimal pathway for the main reaction of direct hydrogenation of maleic anhydride on the Cu211 surface is clarified as MA → C4H3O3 → SA → C4H5O3 → C4H4O2 → C4H5O2 → GBL. At the Cu211–ZnO interface, the optimal pathway for the main reaction of direct hydrogenation involves MA → C4H3O3 → SA → C4H4O3 → C4H5O3 → C4H4O2 → C4H5O2 → GBL → C4H6O2 → C4H7O2 → C4H8O2 → C4H9O2 → BDO. The study indicates that the Cu211–ZnO interface is more favorable for the main reaction of direct hydrogenation of maleic anhydride. The most probable pathway for the formation of byproduct butyric acid during the direct hydrogenation on Cu211–ZnO involves MA → C4H2O3 → C4H3O3 → C4H4O3 → C4H5O3 → C4H6O3 → C4H5O2 → C4H6O2 → C4H7O2 → C4H8O2. The optimal path for the production of butanol involves the process starting with butyric acid, i.e., C4H8O2 → C4H9O2 → C4H8O → C4H9O → BuOH. Propionic acid is most likely formed through MA, i.e., MA → C4H2O3 → C4H3O2 → C3H4O2 → C3H5O2 → C3H6O2. Propionic acid and propionaldehyde are more likely byproducts in the system, with propyl alcohol being difficult to generate due to its higher energy barrier. The most probable pathway for CO production involves SA → C4H4O3 → C3H4O2 + CO. In the presence of water, the rate-controlling step for the generation of maleic acid from MA is C4H2O3 + H → C4H3O3. SA is more inclined to generate succinic acid, succinaldehyde, and GBL, rather than γ-hydroxybutyric acid and BDO, with the rate-controlling step being C4H7O2 → C4H6O2 + H. Water is more likely to form through the combination of two OH groups. During the catalyst construction and modification processes, it is advisable to construct as many Cu211–ZnO interfaces as possible within a reasonable range to enhance the production of 1,4-butanediol. Suppressing the open-loop reaction of maleic anhydride can effectively inhibit the generation of byproducts such as butyric acid, butyraldehyde, butanol, propionic acid, propionaldehyde, and maleic acid. Timely removal of water generated in the system is essential to prevent the transformation of maleic anhydride into maleic acid and the conversion of succinic anhydride into succinic acid and succinaldehyde. This helps minimize raw material consumption and reduce the formation of byproducts. The elucidation of the reaction mechanism of direct hydrogenation of maleic anhydride on Cu–ZnO provides valuable insights and guidance for the construction and modification of catalysts, enhancement of 1,4-butanediol yield and purity, and optimization and improvement of the production process. It is hoped that this research can offer some suggestions and assistance for the improvement of the 1,4-butanediol and biodegradable plastics industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Forest完成签到,获得积分10
刚刚
石蕊关注了科研通微信公众号
1秒前
刘文静发布了新的文献求助10
1秒前
丘比特应助小叶子采纳,获得10
1秒前
可爱的函函应助晚云高采纳,获得10
1秒前
天真大神完成签到,获得积分10
1秒前
周新哲完成签到 ,获得积分10
2秒前
科研通AI5应助vansama采纳,获得10
2秒前
2秒前
Owen应助黄林旋采纳,获得10
3秒前
4秒前
琼仔仔发布了新的文献求助10
4秒前
4秒前
牛马人儿完成签到,获得积分10
4秒前
Parrot_PAI发布了新的文献求助10
5秒前
5秒前
6秒前
书生发布了新的文献求助30
6秒前
碧蓝世立发布了新的文献求助10
7秒前
悦耳妙旋应助zhy采纳,获得10
7秒前
汉堡包应助缥缈的紫槐采纳,获得30
7秒前
迷人雅容完成签到,获得积分10
8秒前
8秒前
开放金鱼发布了新的文献求助10
9秒前
顺其自然_666888完成签到,获得积分10
9秒前
小刘发布了新的文献求助10
9秒前
SYLH应助du1999采纳,获得10
10秒前
CIOOICO1发布了新的文献求助10
10秒前
酷波er应助贪玩手链采纳,获得10
10秒前
11秒前
11秒前
昭玥完成签到,获得积分10
12秒前
科研通AI5应助小思采纳,获得10
12秒前
忐忑的源智完成签到,获得积分20
13秒前
shanshan发布了新的文献求助10
13秒前
王鹏程发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842227
求助须知:如何正确求助?哪些是违规求助? 3384336
关于积分的说明 10534304
捐赠科研通 3104803
什么是DOI,文献DOI怎么找? 1709801
邀请新用户注册赠送积分活动 823377
科研通“疑难数据库(出版商)”最低求助积分说明 774048