Machine learning-based prediction of the post-thrombotic syndrome: Model development and validation study

医学 血栓后综合征 队列 逻辑回归 梯度升压 接收机工作特性 决策树 深静脉 预测建模 人工智能 机器学习 血栓形成 内科学 计算机科学 随机森林
作者
Tao Yu,Runnan Shen,Guochang You,Lin Li,Shimao Kang,Xiaoyan Wang,Jiatang Xu,Dongxi Zhu,Zuqi Xia,Junmeng Zheng,Kai Huang
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media SA]
卷期号:9 被引量:3
标识
DOI:10.3389/fcvm.2022.990788
摘要

Background Prevention is highly involved in reducing the incidence of post-thrombotic syndrome (PTS). We aimed to develop accurate models with machine learning (ML) algorithms to predict whether PTS would occur within 24 months. Materials and methods The clinical data used for model building were obtained from the Acute Venous Thrombosis: Thrombus Removal with Adjunctive Catheter-Directed Thrombolysis study and the external validation cohort was acquired from the Sun Yat-sen Memorial Hospital in China. The main outcome was defined as the occurrence of PTS events (Villalta score ≥5). Twenty-three clinical variables were included, and four ML algorithms were applied to build the models. For discrimination and calibration, F scores were used to evaluate the prediction ability of the models. The external validation cohort was divided into ten groups based on the risk estimate deciles to identify the hazard threshold. Results In total, 555 patients with deep vein thrombosis (DVT) were included to build models using ML algorithms, and the models were further validated in a Chinese cohort comprising 117 patients. When predicting PTS within 2 years after acute DVT, logistic regression based on gradient descent and L1 regularization got the highest area under the curve (AUC) of 0.83 (95% CI:0.76–0.89) in external validation. When considering model performance in both the derivation and external validation cohorts, the eXtreme gradient boosting and gradient boosting decision tree models had similar results and presented better stability and generalization. The external validation cohort was divided into low, intermediate, and high-risk groups with the prediction probability of 0.3 and 0.4 as critical points. Conclusion Machine learning models built for PTS had accurate prediction ability and stable generalization, which can further facilitate clinical decision-making, with potentially important implications for selecting patients who will benefit from endovascular surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨帅完成签到,获得积分20
刚刚
大意的茈完成签到 ,获得积分10
刚刚
颜靖仇发布了新的文献求助10
刚刚
wangdongjiao完成签到,获得积分10
1秒前
我住隔壁我姓王完成签到,获得积分10
1秒前
燕天与发布了新的文献求助10
1秒前
陈雨晴发布了新的文献求助10
2秒前
科研通AI2S应助元谷雪采纳,获得10
2秒前
小米完成签到,获得积分10
2秒前
sinon完成签到,获得积分10
2秒前
2秒前
夏定海完成签到,获得积分10
2秒前
giao发布了新的文献求助10
3秒前
乐观安蕾完成签到,获得积分10
4秒前
4秒前
990723完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
瀼瀼完成签到,获得积分10
4秒前
5秒前
啊楠完成签到,获得积分10
5秒前
郭勇慧发布了新的文献求助10
5秒前
6秒前
豆子完成签到 ,获得积分10
6秒前
玉子烧完成签到,获得积分10
6秒前
完美世界应助不败姑娘采纳,获得10
6秒前
6秒前
6秒前
111111发布了新的文献求助10
7秒前
清脆雪巧完成签到,获得积分10
7秒前
7秒前
zhaopenghui发布了新的文献求助10
7秒前
惰性气体发布了新的文献求助10
8秒前
8秒前
cy完成签到 ,获得积分20
8秒前
8秒前
9秒前
黑大帅发布了新的文献求助10
9秒前
小Z发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034