Machine learning-based prediction of the post-thrombotic syndrome: Model development and validation study

医学 血栓后综合征 队列 逻辑回归 梯度升压 接收机工作特性 决策树 深静脉 预测建模 人工智能 机器学习 血栓形成 内科学 计算机科学 随机森林
作者
Tao Yu,Runnan Shen,Guochang You,Lin Li,Shimao Kang,Xiaoyan Wang,Jiatang Xu,Dongxi Zhu,Zuqi Xia,Junmeng Zheng,Kai Huang
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media SA]
卷期号:9 被引量:3
标识
DOI:10.3389/fcvm.2022.990788
摘要

Background Prevention is highly involved in reducing the incidence of post-thrombotic syndrome (PTS). We aimed to develop accurate models with machine learning (ML) algorithms to predict whether PTS would occur within 24 months. Materials and methods The clinical data used for model building were obtained from the Acute Venous Thrombosis: Thrombus Removal with Adjunctive Catheter-Directed Thrombolysis study and the external validation cohort was acquired from the Sun Yat-sen Memorial Hospital in China. The main outcome was defined as the occurrence of PTS events (Villalta score ≥5). Twenty-three clinical variables were included, and four ML algorithms were applied to build the models. For discrimination and calibration, F scores were used to evaluate the prediction ability of the models. The external validation cohort was divided into ten groups based on the risk estimate deciles to identify the hazard threshold. Results In total, 555 patients with deep vein thrombosis (DVT) were included to build models using ML algorithms, and the models were further validated in a Chinese cohort comprising 117 patients. When predicting PTS within 2 years after acute DVT, logistic regression based on gradient descent and L1 regularization got the highest area under the curve (AUC) of 0.83 (95% CI:0.76–0.89) in external validation. When considering model performance in both the derivation and external validation cohorts, the eXtreme gradient boosting and gradient boosting decision tree models had similar results and presented better stability and generalization. The external validation cohort was divided into low, intermediate, and high-risk groups with the prediction probability of 0.3 and 0.4 as critical points. Conclusion Machine learning models built for PTS had accurate prediction ability and stable generalization, which can further facilitate clinical decision-making, with potentially important implications for selecting patients who will benefit from endovascular surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll发布了新的文献求助10
1秒前
1秒前
1秒前
just_cook完成签到,获得积分10
2秒前
2秒前
Unique发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
ztgzttt发布了新的文献求助10
5秒前
5秒前
雨姐科研应助1234567采纳,获得10
6秒前
7秒前
在水一方应助神勇太君采纳,获得10
7秒前
飞雪完成签到,获得积分10
8秒前
姜露萍发布了新的文献求助10
9秒前
sfc999发布了新的文献求助10
9秒前
jias发布了新的文献求助10
9秒前
9秒前
李健应助妮可收件箱采纳,获得10
11秒前
8y24dp发布了新的文献求助10
12秒前
科研小王发布了新的文献求助10
12秒前
踏实采波完成签到,获得积分10
12秒前
14秒前
14秒前
周裕川发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
1234567完成签到,获得积分10
16秒前
16秒前
18秒前
18秒前
青余完成签到,获得积分10
19秒前
19秒前
田様应助书记采纳,获得10
19秒前
LisA__完成签到,获得积分10
20秒前
大个应助hxueh采纳,获得10
21秒前
21秒前
21秒前
心木完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540506
求助须知:如何正确求助?哪些是违规求助? 4627108
关于积分的说明 14602337
捐赠科研通 4568126
什么是DOI,文献DOI怎么找? 2504382
邀请新用户注册赠送积分活动 1481998
关于科研通互助平台的介绍 1453645