Machine learning-based prediction of the post-thrombotic syndrome: Model development and validation study

医学 血栓后综合征 队列 逻辑回归 梯度升压 接收机工作特性 决策树 深静脉 预测建模 人工智能 机器学习 血栓形成 内科学 计算机科学 随机森林
作者
Tao Yu,Runnan Shen,Guochang You,Lin Li,Shimao Kang,Xiaoyan Wang,Jiatang Xu,Dongxi Zhu,Zuqi Xia,Junmeng Zheng,Kai Huang
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media SA]
卷期号:9 被引量:3
标识
DOI:10.3389/fcvm.2022.990788
摘要

Background Prevention is highly involved in reducing the incidence of post-thrombotic syndrome (PTS). We aimed to develop accurate models with machine learning (ML) algorithms to predict whether PTS would occur within 24 months. Materials and methods The clinical data used for model building were obtained from the Acute Venous Thrombosis: Thrombus Removal with Adjunctive Catheter-Directed Thrombolysis study and the external validation cohort was acquired from the Sun Yat-sen Memorial Hospital in China. The main outcome was defined as the occurrence of PTS events (Villalta score ≥5). Twenty-three clinical variables were included, and four ML algorithms were applied to build the models. For discrimination and calibration, F scores were used to evaluate the prediction ability of the models. The external validation cohort was divided into ten groups based on the risk estimate deciles to identify the hazard threshold. Results In total, 555 patients with deep vein thrombosis (DVT) were included to build models using ML algorithms, and the models were further validated in a Chinese cohort comprising 117 patients. When predicting PTS within 2 years after acute DVT, logistic regression based on gradient descent and L1 regularization got the highest area under the curve (AUC) of 0.83 (95% CI:0.76–0.89) in external validation. When considering model performance in both the derivation and external validation cohorts, the eXtreme gradient boosting and gradient boosting decision tree models had similar results and presented better stability and generalization. The external validation cohort was divided into low, intermediate, and high-risk groups with the prediction probability of 0.3 and 0.4 as critical points. Conclusion Machine learning models built for PTS had accurate prediction ability and stable generalization, which can further facilitate clinical decision-making, with potentially important implications for selecting patients who will benefit from endovascular surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芮安的白丁完成签到 ,获得积分10
2秒前
现代的紫霜完成签到,获得积分10
5秒前
饼饼完成签到,获得积分10
5秒前
ZH完成签到 ,获得积分10
5秒前
baiabi完成签到,获得积分10
6秒前
jiang完成签到,获得积分10
6秒前
老迟到的幼枫完成签到,获得积分10
6秒前
王妍完成签到 ,获得积分10
8秒前
刘静完成签到,获得积分10
10秒前
FrancisCho完成签到,获得积分0
10秒前
李爱国应助等待秀采纳,获得10
10秒前
kingwill应助涛涛子采纳,获得20
10秒前
mysci完成签到,获得积分10
11秒前
是我不得开心妍完成签到 ,获得积分10
16秒前
satori完成签到,获得积分10
18秒前
可爱的小树苗完成签到,获得积分10
18秒前
真实的秋蝶完成签到,获得积分10
19秒前
20秒前
调研昵称发布了新的文献求助10
21秒前
李健应助猪猪hero采纳,获得30
24秒前
苏素完成签到,获得积分10
26秒前
今天也要好好学习完成签到,获得积分10
26秒前
27秒前
HGalong发布了新的文献求助10
27秒前
夏晴发布了新的文献求助40
28秒前
等待秀发布了新的文献求助10
30秒前
狼牧羊城完成签到,获得积分10
30秒前
苏西坡完成签到 ,获得积分10
31秒前
chawenxian2025完成签到 ,获得积分10
32秒前
ANESTHESIA_XY完成签到 ,获得积分10
34秒前
hansa完成签到,获得积分0
35秒前
科研小笨猪完成签到,获得积分10
36秒前
yeurekar完成签到,获得积分10
36秒前
Behappy完成签到 ,获得积分10
39秒前
无限的含羞草完成签到,获得积分10
41秒前
baiabi发布了新的文献求助10
41秒前
包容东蒽完成签到 ,获得积分10
42秒前
张小度ever完成签到 ,获得积分10
42秒前
43秒前
CNJX完成签到,获得积分10
44秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466849
求助须知:如何正确求助?哪些是违规求助? 3059733
关于积分的说明 9067476
捐赠科研通 2750209
什么是DOI,文献DOI怎么找? 1509108
科研通“疑难数据库(出版商)”最低求助积分说明 697126
邀请新用户注册赠送积分活动 696923