已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning-based prediction of the post-thrombotic syndrome: Model development and validation study

医学 血栓后综合征 队列 逻辑回归 梯度升压 接收机工作特性 决策树 深静脉 预测建模 人工智能 机器学习 血栓形成 内科学 计算机科学 随机森林
作者
Tao Yu,Runnan Shen,Guochang You,Lin Li,Shimao Kang,Xiaoyan Wang,Jiatang Xu,Dongxi Zhu,Zuqi Xia,Junmeng Zheng,Kai Huang
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media SA]
卷期号:9 被引量:3
标识
DOI:10.3389/fcvm.2022.990788
摘要

Background Prevention is highly involved in reducing the incidence of post-thrombotic syndrome (PTS). We aimed to develop accurate models with machine learning (ML) algorithms to predict whether PTS would occur within 24 months. Materials and methods The clinical data used for model building were obtained from the Acute Venous Thrombosis: Thrombus Removal with Adjunctive Catheter-Directed Thrombolysis study and the external validation cohort was acquired from the Sun Yat-sen Memorial Hospital in China. The main outcome was defined as the occurrence of PTS events (Villalta score ≥5). Twenty-three clinical variables were included, and four ML algorithms were applied to build the models. For discrimination and calibration, F scores were used to evaluate the prediction ability of the models. The external validation cohort was divided into ten groups based on the risk estimate deciles to identify the hazard threshold. Results In total, 555 patients with deep vein thrombosis (DVT) were included to build models using ML algorithms, and the models were further validated in a Chinese cohort comprising 117 patients. When predicting PTS within 2 years after acute DVT, logistic regression based on gradient descent and L1 regularization got the highest area under the curve (AUC) of 0.83 (95% CI:0.76–0.89) in external validation. When considering model performance in both the derivation and external validation cohorts, the eXtreme gradient boosting and gradient boosting decision tree models had similar results and presented better stability and generalization. The external validation cohort was divided into low, intermediate, and high-risk groups with the prediction probability of 0.3 and 0.4 as critical points. Conclusion Machine learning models built for PTS had accurate prediction ability and stable generalization, which can further facilitate clinical decision-making, with potentially important implications for selecting patients who will benefit from endovascular surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奔跑石小猛完成签到,获得积分10
2秒前
朴素苑睐关注了科研通微信公众号
4秒前
思源应助远枫orz采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
9秒前
Gun完成签到,获得积分10
10秒前
科研通AI2S应助vivi采纳,获得10
10秒前
小巧怀薇完成签到,获得积分10
13秒前
14秒前
16秒前
StonesKing完成签到,获得积分20
17秒前
ccm应助阿Q采纳,获得30
17秒前
清秀灵薇完成签到,获得积分10
17秒前
siji发布了新的文献求助10
18秒前
20秒前
21秒前
StonesKing发布了新的文献求助10
26秒前
28秒前
Viiigo完成签到,获得积分10
29秒前
小二郎应助siji采纳,获得10
30秒前
羊羊完成签到 ,获得积分10
33秒前
33秒前
丹丹子完成签到 ,获得积分10
34秒前
lynn完成签到,获得积分10
36秒前
36秒前
37秒前
归尘发布了新的文献求助10
40秒前
iorpi完成签到,获得积分10
41秒前
Wen929完成签到 ,获得积分10
42秒前
yuekexing完成签到,获得积分20
43秒前
贱小贱完成签到,获得积分10
45秒前
在水一方应助Sam采纳,获得10
46秒前
wanci应助怕孤单的以云采纳,获得10
49秒前
可爱的函函应助马尔扎哈采纳,获得10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418147
求助须知:如何正确求助?哪些是违规求助? 4533868
关于积分的说明 14142681
捐赠科研通 4450148
什么是DOI,文献DOI怎么找? 2441102
邀请新用户注册赠送积分活动 1432858
关于科研通互助平台的介绍 1410079