已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning-based prediction of the post-thrombotic syndrome: Model development and validation study

医学 血栓后综合征 队列 逻辑回归 梯度升压 接收机工作特性 决策树 深静脉 预测建模 人工智能 机器学习 血栓形成 内科学 计算机科学 随机森林
作者
Tao Yu,Runnan Shen,Guochang You,Lin Li,Shimao Kang,Xiaoyan Wang,Jiatang Xu,Dongxi Zhu,Zuqi Xia,Junmeng Zheng,Kai Huang
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media]
卷期号:9 被引量:3
标识
DOI:10.3389/fcvm.2022.990788
摘要

Background Prevention is highly involved in reducing the incidence of post-thrombotic syndrome (PTS). We aimed to develop accurate models with machine learning (ML) algorithms to predict whether PTS would occur within 24 months. Materials and methods The clinical data used for model building were obtained from the Acute Venous Thrombosis: Thrombus Removal with Adjunctive Catheter-Directed Thrombolysis study and the external validation cohort was acquired from the Sun Yat-sen Memorial Hospital in China. The main outcome was defined as the occurrence of PTS events (Villalta score ≥5). Twenty-three clinical variables were included, and four ML algorithms were applied to build the models. For discrimination and calibration, F scores were used to evaluate the prediction ability of the models. The external validation cohort was divided into ten groups based on the risk estimate deciles to identify the hazard threshold. Results In total, 555 patients with deep vein thrombosis (DVT) were included to build models using ML algorithms, and the models were further validated in a Chinese cohort comprising 117 patients. When predicting PTS within 2 years after acute DVT, logistic regression based on gradient descent and L1 regularization got the highest area under the curve (AUC) of 0.83 (95% CI:0.76–0.89) in external validation. When considering model performance in both the derivation and external validation cohorts, the eXtreme gradient boosting and gradient boosting decision tree models had similar results and presented better stability and generalization. The external validation cohort was divided into low, intermediate, and high-risk groups with the prediction probability of 0.3 and 0.4 as critical points. Conclusion Machine learning models built for PTS had accurate prediction ability and stable generalization, which can further facilitate clinical decision-making, with potentially important implications for selecting patients who will benefit from endovascular surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助白鸽鸽采纳,获得10
1秒前
zz完成签到,获得积分20
2秒前
2秒前
desperter完成签到,获得积分10
3秒前
3秒前
4秒前
yemuan完成签到,获得积分10
5秒前
bkagyin应助di采纳,获得10
6秒前
7秒前
7秒前
9秒前
充电宝应助zz采纳,获得10
9秒前
赘婿应助张三七采纳,获得20
9秒前
黄逸然发布了新的文献求助10
12秒前
何1完成签到 ,获得积分10
14秒前
Xiao完成签到,获得积分10
15秒前
今后应助皮皮蟹采纳,获得10
19秒前
胡丹妮完成签到,获得积分10
22秒前
26秒前
小高完成签到 ,获得积分10
29秒前
29秒前
30秒前
31秒前
皮皮蟹发布了新的文献求助10
31秒前
di发布了新的文献求助10
33秒前
布图格其关注了科研通微信公众号
34秒前
34秒前
汉堡包应助ZB采纳,获得10
36秒前
蘑菇腿发布了新的文献求助80
37秒前
皮皮蟹完成签到,获得积分20
37秒前
天天快乐应助小爽采纳,获得10
39秒前
爱打球的小蔡鸡完成签到,获得积分10
43秒前
45秒前
46秒前
橘皮灯灯完成签到,获得积分10
47秒前
47秒前
蘑菇腿发布了新的文献求助10
48秒前
winston发布了新的文献求助10
49秒前
LZR完成签到,获得积分10
49秒前
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
综合实践活动的设计与实施 1000
江苏省中小学课外体育活动设计与实施 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952157
求助须知:如何正确求助?哪些是违规求助? 4214880
关于积分的说明 13110211
捐赠科研通 3996559
什么是DOI,文献DOI怎么找? 2187563
邀请新用户注册赠送积分活动 1202878
关于科研通互助平台的介绍 1115624