A Workflow Scheduling in Cloud Environment Using a Combination of Moth-Flame and Salp Swarm Algorithms

群体行为 云计算 工作流程 计算机科学 算法 调度(生产过程) 分布式计算 数学优化 人工智能 数学 数据库 操作系统
作者
Li Qiao,saeed naderi,Mahmood Ahmadi,Seyedali Mirjalili
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:3
标识
DOI:10.2139/ssrn.4216421
摘要

Download This Paper Open PDF in Browser Add Paper to My Library Share: Permalink Using these links will ensure access to this page indefinitely Copy URL A Workflow Scheduling in Cloud Environment Using a Combination of Moth-Flame and Salp Swarm Algorithms 26 Pages Posted: 12 Sep 2022 See all articles by Li QiaoLi QiaoLvliang Universitysaeed naderiaffiliation not provided to SSRNMahmood Ahmadiaffiliation not provided to SSRNSeyedali MirjaliliGriffith University Abstract Cloud computing is a computing model based on computer networks such as the Internet that provides a new model for the supply, consumption, and delivery of computing services using the network. With the increase in user requests and their diversity, and with the increase in the demand of scientific workflows, the need for an optimal workflow scheduling method to increase the quality of cloud server services to different users increases. In this paper, the workflow scheduling in the cloud environment is examined and different servers that have different numbers of heterogeneous Virtual Machines (VMs) are examined. Therefore, a multi-objective workflow scheduling method using a combination of Moth-Flame Optimization (MFO) and Salp Swarm Algorithm (SSA), MFSSA with different objectives (makespan time, throughput , resource utilization, and reliability) is proposed. The main goal of the MFSSA algorithm is to find the optimal servers and VMs based on the minimization of the objective function, as a result of which the best VM for each task of workflow is obtained. In addition, a technique is proposed to select the best server and the best VM to execute the workflow tasks. Experimental results demonstrate that MFSSA is better than MFO, Particle Swarm Optimization algorithms (PSO), Harris Hawks Optimization (HHO), Firefly Algorithm (FA), and SSA in terms of various Quality of Service (QoS) metrics, including objective function value, resources utilization (%), throughput, reliability, and makespan time. Keywords: workflow scheduling, cloud computing, optimization, meta-heuristic, Moth-Flame Optimization, and Salp Swarm Algorithm. Suggested Citation: Suggested Citation Qiao, Li and naderi, saeed and Ahmadi, Mahmood and Mirjalili, Seyedali, A Workflow Scheduling in Cloud Environment Using a Combination of Moth-Flame and Salp Swarm Algorithms. Available at SSRN: https://ssrn.com/abstract=4216421 Li Qiao (Contact Author) Lvliang University ( email ) Saeed Naderi affiliation not provided to SSRN ( email ) No Address Available Mahmood Ahmadi affiliation not provided to SSRN ( email ) No Address Available Seyedali Mirjalili Griffith University ( email ) 170 Kessels RoadNathan, Queensland QLD 4111Australia Download This Paper Open PDF in Browser Do you have a job opening that you would like to promote on SSRN? Place Job Opening Paper statistics Downloads 0 Abstract Views 2 PlumX Metrics Related eJournals Computation Theory eJournal Follow Computation Theory eJournal Subscribe to this fee journal for more curated articles on this topic FOLLOWERS 175 PAPERS 3,099 Feedback Feedback to SSRN Feedback (required) Email (required) Submit If you need immediate assistance, call 877-SSRNHelp (877 777 6435) in the United States, or +1 212 448 2500 outside of the United States, 8:30AM to 6:00PM U.S. Eastern, Monday - Friday. Submit a Paper Section 508 Text Only Pages SSRN Quick Links SSRN Solutions Research Paper Series Conference Papers Partners in Publishing Jobs & Announcements Newsletter Sign Up SSRN Rankings Top Papers Top Authors Top Organizations About SSRN SSRN Objectives Network Directors Presidential Letter Announcements Contact us FAQs Copyright Terms and Conditions Privacy Policy We use cookies to help provide and enhance our service and tailor content. To learn more, visit Cookie Settings. This page was processed by aws-apollo-4dc in 0.195 seconds

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白菜发布了新的文献求助10
刚刚
传奇3应助背后梦安采纳,获得10
2秒前
霸气巧蕊发布了新的文献求助10
2秒前
田様应助Wmin采纳,获得10
2秒前
2秒前
英姑应助潇洒的白昼采纳,获得10
4秒前
万能图书馆应助小鱼采纳,获得30
4秒前
5秒前
6秒前
Lea_at_发布了新的文献求助10
6秒前
烟花应助fdscat采纳,获得10
6秒前
6秒前
6秒前
6秒前
lisalin完成签到,获得积分20
6秒前
6秒前
深情安青应助栗沐沐采纳,获得10
6秒前
温暖的以筠完成签到,获得积分10
7秒前
优秀寒云完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
复杂诗蕊关注了科研通微信公众号
9秒前
小锂故发布了新的文献求助10
9秒前
9秒前
Yuki完成签到 ,获得积分10
9秒前
晚风发布了新的文献求助10
10秒前
丰富不惜完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
fafentuqiang发布了新的文献求助10
11秒前
hahada完成签到,获得积分10
12秒前
蜘蛛道理发布了新的文献求助10
12秒前
12秒前
快乐难敌发布了新的文献求助10
12秒前
菲噗噗完成签到,获得积分10
12秒前
北秋发布了新的文献求助10
13秒前
HMF发布了新的文献求助10
13秒前
小树完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501168
关于积分的说明 11102048
捐赠科研通 3231509
什么是DOI,文献DOI怎么找? 1786448
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798