A Workflow Scheduling in Cloud Environment Using a Combination of Moth-Flame and Salp Swarm Algorithms

群体行为 云计算 工作流程 计算机科学 算法 调度(生产过程) 分布式计算 数学优化 人工智能 数学 数据库 操作系统
作者
Li Qiao,saeed naderi,Mahmood Ahmadi,Seyedali Mirjalili
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:3
标识
DOI:10.2139/ssrn.4216421
摘要

Download This Paper Open PDF in Browser Add Paper to My Library Share: Permalink Using these links will ensure access to this page indefinitely Copy URL A Workflow Scheduling in Cloud Environment Using a Combination of Moth-Flame and Salp Swarm Algorithms 26 Pages Posted: 12 Sep 2022 See all articles by Li QiaoLi QiaoLvliang Universitysaeed naderiaffiliation not provided to SSRNMahmood Ahmadiaffiliation not provided to SSRNSeyedali MirjaliliGriffith University Abstract Cloud computing is a computing model based on computer networks such as the Internet that provides a new model for the supply, consumption, and delivery of computing services using the network. With the increase in user requests and their diversity, and with the increase in the demand of scientific workflows, the need for an optimal workflow scheduling method to increase the quality of cloud server services to different users increases. In this paper, the workflow scheduling in the cloud environment is examined and different servers that have different numbers of heterogeneous Virtual Machines (VMs) are examined. Therefore, a multi-objective workflow scheduling method using a combination of Moth-Flame Optimization (MFO) and Salp Swarm Algorithm (SSA), MFSSA with different objectives (makespan time, throughput , resource utilization, and reliability) is proposed. The main goal of the MFSSA algorithm is to find the optimal servers and VMs based on the minimization of the objective function, as a result of which the best VM for each task of workflow is obtained. In addition, a technique is proposed to select the best server and the best VM to execute the workflow tasks. Experimental results demonstrate that MFSSA is better than MFO, Particle Swarm Optimization algorithms (PSO), Harris Hawks Optimization (HHO), Firefly Algorithm (FA), and SSA in terms of various Quality of Service (QoS) metrics, including objective function value, resources utilization (%), throughput, reliability, and makespan time. Keywords: workflow scheduling, cloud computing, optimization, meta-heuristic, Moth-Flame Optimization, and Salp Swarm Algorithm. Suggested Citation: Suggested Citation Qiao, Li and naderi, saeed and Ahmadi, Mahmood and Mirjalili, Seyedali, A Workflow Scheduling in Cloud Environment Using a Combination of Moth-Flame and Salp Swarm Algorithms. Available at SSRN: https://ssrn.com/abstract=4216421 Li Qiao (Contact Author) Lvliang University ( email ) Saeed Naderi affiliation not provided to SSRN ( email ) No Address Available Mahmood Ahmadi affiliation not provided to SSRN ( email ) No Address Available Seyedali Mirjalili Griffith University ( email ) 170 Kessels RoadNathan, Queensland QLD 4111Australia Download This Paper Open PDF in Browser Do you have a job opening that you would like to promote on SSRN? Place Job Opening Paper statistics Downloads 0 Abstract Views 2 PlumX Metrics Related eJournals Computation Theory eJournal Follow Computation Theory eJournal Subscribe to this fee journal for more curated articles on this topic FOLLOWERS 175 PAPERS 3,099 Feedback Feedback to SSRN Feedback (required) Email (required) Submit If you need immediate assistance, call 877-SSRNHelp (877 777 6435) in the United States, or +1 212 448 2500 outside of the United States, 8:30AM to 6:00PM U.S. Eastern, Monday - Friday. Submit a Paper Section 508 Text Only Pages SSRN Quick Links SSRN Solutions Research Paper Series Conference Papers Partners in Publishing Jobs & Announcements Newsletter Sign Up SSRN Rankings Top Papers Top Authors Top Organizations About SSRN SSRN Objectives Network Directors Presidential Letter Announcements Contact us FAQs Copyright Terms and Conditions Privacy Policy We use cookies to help provide and enhance our service and tailor content. To learn more, visit Cookie Settings. This page was processed by aws-apollo-4dc in 0.195 seconds

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyy关注了科研通微信公众号
刚刚
Jane完成签到 ,获得积分10
1秒前
1秒前
1秒前
kento发布了新的文献求助30
1秒前
Akim应助balzacsun采纳,获得10
2秒前
狼来了aas发布了新的文献求助10
2秒前
3秒前
didi完成签到,获得积分10
3秒前
嘻嘻发布了新的文献求助10
5秒前
冲冲冲完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
善良身影完成签到,获得积分10
8秒前
天天快乐应助郭豪琪采纳,获得10
9秒前
13679165979发布了新的文献求助10
11秒前
13679165979发布了新的文献求助10
11秒前
13679165979发布了新的文献求助10
11秒前
13679165979发布了新的文献求助10
11秒前
13679165979发布了新的文献求助10
11秒前
11秒前
Su发布了新的文献求助10
11秒前
11秒前
淡定的思松应助呆萌士晋采纳,获得10
11秒前
12秒前
13秒前
dilli完成签到 ,获得积分10
13秒前
cwy发布了新的文献求助10
15秒前
wz发布了新的文献求助10
15秒前
balzacsun发布了新的文献求助10
17秒前
JamesPei应助星星采纳,获得10
17秒前
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824