A Workflow Scheduling in Cloud Environment Using a Combination of Moth-Flame and Salp Swarm Algorithms

群体行为 云计算 工作流程 计算机科学 算法 调度(生产过程) 分布式计算 数学优化 人工智能 数学 数据库 操作系统
作者
Li Qiao,saeed naderi,Mahmood Ahmadi,Seyedali Mirjalili
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:3
标识
DOI:10.2139/ssrn.4216421
摘要

Download This Paper Open PDF in Browser Add Paper to My Library Share: Permalink Using these links will ensure access to this page indefinitely Copy URL A Workflow Scheduling in Cloud Environment Using a Combination of Moth-Flame and Salp Swarm Algorithms 26 Pages Posted: 12 Sep 2022 See all articles by Li QiaoLi QiaoLvliang Universitysaeed naderiaffiliation not provided to SSRNMahmood Ahmadiaffiliation not provided to SSRNSeyedali MirjaliliGriffith University Abstract Cloud computing is a computing model based on computer networks such as the Internet that provides a new model for the supply, consumption, and delivery of computing services using the network. With the increase in user requests and their diversity, and with the increase in the demand of scientific workflows, the need for an optimal workflow scheduling method to increase the quality of cloud server services to different users increases. In this paper, the workflow scheduling in the cloud environment is examined and different servers that have different numbers of heterogeneous Virtual Machines (VMs) are examined. Therefore, a multi-objective workflow scheduling method using a combination of Moth-Flame Optimization (MFO) and Salp Swarm Algorithm (SSA), MFSSA with different objectives (makespan time, throughput , resource utilization, and reliability) is proposed. The main goal of the MFSSA algorithm is to find the optimal servers and VMs based on the minimization of the objective function, as a result of which the best VM for each task of workflow is obtained. In addition, a technique is proposed to select the best server and the best VM to execute the workflow tasks. Experimental results demonstrate that MFSSA is better than MFO, Particle Swarm Optimization algorithms (PSO), Harris Hawks Optimization (HHO), Firefly Algorithm (FA), and SSA in terms of various Quality of Service (QoS) metrics, including objective function value, resources utilization (%), throughput, reliability, and makespan time. Keywords: workflow scheduling, cloud computing, optimization, meta-heuristic, Moth-Flame Optimization, and Salp Swarm Algorithm. Suggested Citation: Suggested Citation Qiao, Li and naderi, saeed and Ahmadi, Mahmood and Mirjalili, Seyedali, A Workflow Scheduling in Cloud Environment Using a Combination of Moth-Flame and Salp Swarm Algorithms. Available at SSRN: https://ssrn.com/abstract=4216421 Li Qiao (Contact Author) Lvliang University ( email ) Saeed Naderi affiliation not provided to SSRN ( email ) No Address Available Mahmood Ahmadi affiliation not provided to SSRN ( email ) No Address Available Seyedali Mirjalili Griffith University ( email ) 170 Kessels RoadNathan, Queensland QLD 4111Australia Download This Paper Open PDF in Browser Do you have a job opening that you would like to promote on SSRN? Place Job Opening Paper statistics Downloads 0 Abstract Views 2 PlumX Metrics Related eJournals Computation Theory eJournal Follow Computation Theory eJournal Subscribe to this fee journal for more curated articles on this topic FOLLOWERS 175 PAPERS 3,099 Feedback Feedback to SSRN Feedback (required) Email (required) Submit If you need immediate assistance, call 877-SSRNHelp (877 777 6435) in the United States, or +1 212 448 2500 outside of the United States, 8:30AM to 6:00PM U.S. Eastern, Monday - Friday. Submit a Paper Section 508 Text Only Pages SSRN Quick Links SSRN Solutions Research Paper Series Conference Papers Partners in Publishing Jobs & Announcements Newsletter Sign Up SSRN Rankings Top Papers Top Authors Top Organizations About SSRN SSRN Objectives Network Directors Presidential Letter Announcements Contact us FAQs Copyright Terms and Conditions Privacy Policy We use cookies to help provide and enhance our service and tailor content. To learn more, visit Cookie Settings. This page was processed by aws-apollo-4dc in 0.195 seconds

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
qingniujushi发布了新的文献求助10
1秒前
1秒前
打打应助何姗悦采纳,获得10
1秒前
坦率凉面发布了新的文献求助20
1秒前
独特的绯完成签到,获得积分10
2秒前
YY发布了新的文献求助10
2秒前
2秒前
冷酷太清完成签到,获得积分10
3秒前
李键刚发布了新的文献求助10
3秒前
momoni完成签到 ,获得积分10
3秒前
李爱国应助轻松面包采纳,获得10
4秒前
小巧外套完成签到,获得积分10
5秒前
圆彰七大完成签到 ,获得积分10
5秒前
祝愿发布了新的文献求助10
5秒前
Elokuu_完成签到,获得积分10
6秒前
整齐的不评完成签到,获得积分10
6秒前
6秒前
小雨治大水完成签到,获得积分20
6秒前
reeedirect发布了新的文献求助10
6秒前
小小完成签到,获得积分10
7秒前
桐桐应助qingniujushi采纳,获得10
7秒前
8秒前
英姑应助无影无踪屁采纳,获得10
8秒前
8秒前
麻麻发布了新的文献求助20
9秒前
量子星尘发布了新的文献求助10
10秒前
lzc4632完成签到,获得积分10
11秒前
黑咖啡完成签到,获得积分10
12秒前
13秒前
汉堡包应助WWW采纳,获得10
14秒前
14秒前
美好灵寒发布了新的文献求助10
14秒前
17秒前
18秒前
领导范儿应助嘻嘻采纳,获得10
19秒前
19秒前
轻松面包发布了新的文献求助10
21秒前
ark861023发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4590079
求助须知:如何正确求助?哪些是违规求助? 4005062
关于积分的说明 12400100
捐赠科研通 3682035
什么是DOI,文献DOI怎么找? 2029370
邀请新用户注册赠送积分活动 1062987
科研通“疑难数据库(出版商)”最低求助积分说明 948589