清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Workflow Scheduling in Cloud Environment Using a Combination of Moth-Flame and Salp Swarm Algorithms

群体行为 云计算 工作流程 计算机科学 算法 调度(生产过程) 分布式计算 数学优化 人工智能 数学 数据库 操作系统
作者
Li Qiao,saeed naderi,Mahmood Ahmadi,Seyedali Mirjalili
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:3
标识
DOI:10.2139/ssrn.4216421
摘要

Download This Paper Open PDF in Browser Add Paper to My Library Share: Permalink Using these links will ensure access to this page indefinitely Copy URL A Workflow Scheduling in Cloud Environment Using a Combination of Moth-Flame and Salp Swarm Algorithms 26 Pages Posted: 12 Sep 2022 See all articles by Li QiaoLi QiaoLvliang Universitysaeed naderiaffiliation not provided to SSRNMahmood Ahmadiaffiliation not provided to SSRNSeyedali MirjaliliGriffith University Abstract Cloud computing is a computing model based on computer networks such as the Internet that provides a new model for the supply, consumption, and delivery of computing services using the network. With the increase in user requests and their diversity, and with the increase in the demand of scientific workflows, the need for an optimal workflow scheduling method to increase the quality of cloud server services to different users increases. In this paper, the workflow scheduling in the cloud environment is examined and different servers that have different numbers of heterogeneous Virtual Machines (VMs) are examined. Therefore, a multi-objective workflow scheduling method using a combination of Moth-Flame Optimization (MFO) and Salp Swarm Algorithm (SSA), MFSSA with different objectives (makespan time, throughput , resource utilization, and reliability) is proposed. The main goal of the MFSSA algorithm is to find the optimal servers and VMs based on the minimization of the objective function, as a result of which the best VM for each task of workflow is obtained. In addition, a technique is proposed to select the best server and the best VM to execute the workflow tasks. Experimental results demonstrate that MFSSA is better than MFO, Particle Swarm Optimization algorithms (PSO), Harris Hawks Optimization (HHO), Firefly Algorithm (FA), and SSA in terms of various Quality of Service (QoS) metrics, including objective function value, resources utilization (%), throughput, reliability, and makespan time. Keywords: workflow scheduling, cloud computing, optimization, meta-heuristic, Moth-Flame Optimization, and Salp Swarm Algorithm. Suggested Citation: Suggested Citation Qiao, Li and naderi, saeed and Ahmadi, Mahmood and Mirjalili, Seyedali, A Workflow Scheduling in Cloud Environment Using a Combination of Moth-Flame and Salp Swarm Algorithms. Available at SSRN: https://ssrn.com/abstract=4216421 Li Qiao (Contact Author) Lvliang University ( email ) Saeed Naderi affiliation not provided to SSRN ( email ) No Address Available Mahmood Ahmadi affiliation not provided to SSRN ( email ) No Address Available Seyedali Mirjalili Griffith University ( email ) 170 Kessels RoadNathan, Queensland QLD 4111Australia Download This Paper Open PDF in Browser Do you have a job opening that you would like to promote on SSRN? Place Job Opening Paper statistics Downloads 0 Abstract Views 2 PlumX Metrics Related eJournals Computation Theory eJournal Follow Computation Theory eJournal Subscribe to this fee journal for more curated articles on this topic FOLLOWERS 175 PAPERS 3,099 Feedback Feedback to SSRN Feedback (required) Email (required) Submit If you need immediate assistance, call 877-SSRNHelp (877 777 6435) in the United States, or +1 212 448 2500 outside of the United States, 8:30AM to 6:00PM U.S. Eastern, Monday - Friday. Submit a Paper Section 508 Text Only Pages SSRN Quick Links SSRN Solutions Research Paper Series Conference Papers Partners in Publishing Jobs & Announcements Newsletter Sign Up SSRN Rankings Top Papers Top Authors Top Organizations About SSRN SSRN Objectives Network Directors Presidential Letter Announcements Contact us FAQs Copyright Terms and Conditions Privacy Policy We use cookies to help provide and enhance our service and tailor content. To learn more, visit Cookie Settings. This page was processed by aws-apollo-4dc in 0.195 seconds

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碎梦星河完成签到,获得积分10
3秒前
mc应助小刘同学采纳,获得10
4秒前
4秒前
大轩完成签到 ,获得积分10
11秒前
tszjw168完成签到 ,获得积分10
28秒前
小刘同学完成签到,获得积分20
42秒前
王一一完成签到,获得积分10
45秒前
和谐的夏岚完成签到 ,获得积分10
45秒前
李木禾完成签到 ,获得积分10
47秒前
Andy完成签到 ,获得积分20
56秒前
Jasper应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
貔貅完成签到 ,获得积分10
1分钟前
Andy发布了新的文献求助10
1分钟前
1分钟前
Qian完成签到 ,获得积分10
2分钟前
清秀LL完成签到 ,获得积分10
2分钟前
leapper完成签到 ,获得积分10
2分钟前
lovelife完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
佳言2009完成签到 ,获得积分10
2分钟前
Dongjie完成签到,获得积分10
3分钟前
Thunnus001完成签到 ,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得20
3分钟前
小新小新完成签到 ,获得积分10
3分钟前
大雁完成签到 ,获得积分0
3分钟前
合不着完成签到 ,获得积分10
3分钟前
Nini发布了新的文献求助10
4分钟前
Hello应助Roinne采纳,获得10
4分钟前
龙猫爱看书完成签到,获得积分10
4分钟前
合适靖儿完成签到 ,获得积分10
4分钟前
mzhang2完成签到 ,获得积分10
4分钟前
Nini发布了新的文献求助10
4分钟前
简奥斯汀完成签到 ,获得积分10
4分钟前
4分钟前
Liverisess完成签到,获得积分10
5分钟前
了了完成签到,获得积分10
5分钟前
6分钟前
冷静尔芙发布了新的文献求助10
6分钟前
shihong_li完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438686
求助须知:如何正确求助?哪些是违规求助? 4549812
关于积分的说明 14221031
捐赠科研通 4470740
什么是DOI,文献DOI怎么找? 2450000
邀请新用户注册赠送积分活动 1440962
关于科研通互助平台的介绍 1417452