亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Workflow Scheduling in Cloud Environment Using a Combination of Moth-Flame and Salp Swarm Algorithms

群体行为 云计算 工作流程 计算机科学 算法 调度(生产过程) 分布式计算 数学优化 人工智能 数学 数据库 操作系统
作者
Li Qiao,saeed naderi,Mahmood Ahmadi,Seyedali Mirjalili
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:3
标识
DOI:10.2139/ssrn.4216421
摘要

Download This Paper Open PDF in Browser Add Paper to My Library Share: Permalink Using these links will ensure access to this page indefinitely Copy URL A Workflow Scheduling in Cloud Environment Using a Combination of Moth-Flame and Salp Swarm Algorithms 26 Pages Posted: 12 Sep 2022 See all articles by Li QiaoLi QiaoLvliang Universitysaeed naderiaffiliation not provided to SSRNMahmood Ahmadiaffiliation not provided to SSRNSeyedali MirjaliliGriffith University Abstract Cloud computing is a computing model based on computer networks such as the Internet that provides a new model for the supply, consumption, and delivery of computing services using the network. With the increase in user requests and their diversity, and with the increase in the demand of scientific workflows, the need for an optimal workflow scheduling method to increase the quality of cloud server services to different users increases. In this paper, the workflow scheduling in the cloud environment is examined and different servers that have different numbers of heterogeneous Virtual Machines (VMs) are examined. Therefore, a multi-objective workflow scheduling method using a combination of Moth-Flame Optimization (MFO) and Salp Swarm Algorithm (SSA), MFSSA with different objectives (makespan time, throughput , resource utilization, and reliability) is proposed. The main goal of the MFSSA algorithm is to find the optimal servers and VMs based on the minimization of the objective function, as a result of which the best VM for each task of workflow is obtained. In addition, a technique is proposed to select the best server and the best VM to execute the workflow tasks. Experimental results demonstrate that MFSSA is better than MFO, Particle Swarm Optimization algorithms (PSO), Harris Hawks Optimization (HHO), Firefly Algorithm (FA), and SSA in terms of various Quality of Service (QoS) metrics, including objective function value, resources utilization (%), throughput, reliability, and makespan time. Keywords: workflow scheduling, cloud computing, optimization, meta-heuristic, Moth-Flame Optimization, and Salp Swarm Algorithm. Suggested Citation: Suggested Citation Qiao, Li and naderi, saeed and Ahmadi, Mahmood and Mirjalili, Seyedali, A Workflow Scheduling in Cloud Environment Using a Combination of Moth-Flame and Salp Swarm Algorithms. Available at SSRN: https://ssrn.com/abstract=4216421 Li Qiao (Contact Author) Lvliang University ( email ) Saeed Naderi affiliation not provided to SSRN ( email ) No Address Available Mahmood Ahmadi affiliation not provided to SSRN ( email ) No Address Available Seyedali Mirjalili Griffith University ( email ) 170 Kessels RoadNathan, Queensland QLD 4111Australia Download This Paper Open PDF in Browser Do you have a job opening that you would like to promote on SSRN? Place Job Opening Paper statistics Downloads 0 Abstract Views 2 PlumX Metrics Related eJournals Computation Theory eJournal Follow Computation Theory eJournal Subscribe to this fee journal for more curated articles on this topic FOLLOWERS 175 PAPERS 3,099 Feedback Feedback to SSRN Feedback (required) Email (required) Submit If you need immediate assistance, call 877-SSRNHelp (877 777 6435) in the United States, or +1 212 448 2500 outside of the United States, 8:30AM to 6:00PM U.S. Eastern, Monday - Friday. Submit a Paper Section 508 Text Only Pages SSRN Quick Links SSRN Solutions Research Paper Series Conference Papers Partners in Publishing Jobs & Announcements Newsletter Sign Up SSRN Rankings Top Papers Top Authors Top Organizations About SSRN SSRN Objectives Network Directors Presidential Letter Announcements Contact us FAQs Copyright Terms and Conditions Privacy Policy We use cookies to help provide and enhance our service and tailor content. To learn more, visit Cookie Settings. This page was processed by aws-apollo-4dc in 0.195 seconds

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
13秒前
chenyuns发布了新的文献求助20
15秒前
31秒前
搜集达人应助lourahan采纳,获得10
37秒前
49秒前
chenyuns发布了新的文献求助20
52秒前
59秒前
lourahan发布了新的文献求助10
1分钟前
1分钟前
chenyuns发布了新的文献求助20
1分钟前
2分钟前
所所应助Hey采纳,获得10
2分钟前
2分钟前
宅心仁厚完成签到 ,获得积分10
2分钟前
3分钟前
充电宝应助liuyuannzhuo采纳,获得10
3分钟前
英俊的铭应助evermore采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
腰果虾仁完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
evermore发布了新的文献求助10
4分钟前
5分钟前
李健应助chenyuns采纳,获得20
5分钟前
5分钟前
华仔应助Benhnhk21采纳,获得10
5分钟前
chenyuns发布了新的文献求助20
5分钟前
万能图书馆应助evermore采纳,获得10
5分钟前
chenyuns完成签到,获得积分10
5分钟前
5分钟前
Benhnhk21发布了新的文献求助10
5分钟前
6分钟前
FashionBoy应助科研通管家采纳,获得10
6分钟前
半糖神仙完成签到 ,获得积分20
6分钟前
6分钟前
liuyuannzhuo发布了新的文献求助10
7分钟前
7分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146746
求助须知:如何正确求助?哪些是违规求助? 2798061
关于积分的说明 7826593
捐赠科研通 2454566
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527