Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations

生成对抗网络 人工智能 计算机科学 对抗制 机器学习 生成语法 深度学习 断层(地质) 卷积神经网络 生物 古生物学
作者
Kai Zhou,Edward Diehl,Jiong Tang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:185: 109772-109772 被引量:99
标识
DOI:10.1016/j.ymssp.2022.109772
摘要

Fault detection and diagnosis of gear systems using vibration measurements play an important role in ensuring their functional reliability and safety. Computational intelligence, leveraging upon classification through various surrogate models, has recently demonstrated certain level of success. Major challenge however remains. The establishment of surrogate models generally requires large size of training data with specific labels corresponding to explicitly known gear fault conditions, which may not be available in practical applications. Both the size of available data and the respective labels may be quite limited due to the high cost, which hinders the diagnosis of unseen/unexpected faults with desired reliability. In this research we synthesize a deep convolutional generative adversarial network (DCGAN) to tackle this challenge. This new approach follows the semi-supervised learning concept, the performance of which is significantly enhanced by introducing additionally the inexpensive unlabeled data. The balanced adversarial effect between the discriminator and generator in DCGAN is realized by appropriately designing their architectures, which as a result can enable the high accuracy of diagnosis with scarce labeled data. More importantly, by taking full advantage of the rich fault signatures in the unlabeled data that point to the diverse unseen faults, the intrinsic correlation of underlying physics between the unseen and known faults can be implicitly elucidated via unique semi-supervised learning strategy featured in DCGAN. Therefore, the extended capability in diagnosing the unseen faults that are beyond the known faults in training dataset can be realized, which bears practical significance. Systematic case studies using experimental data acquired from a lab-scale gear system are carried out to validate the new diagnosis framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉晓凡发布了新的文献求助10
刚刚
Dada完成签到,获得积分10
刚刚
McQ发布了新的文献求助10
刚刚
我是老大应助tonight采纳,获得10
1秒前
负责月光完成签到,获得积分10
2秒前
千空发布了新的文献求助10
2秒前
2秒前
4秒前
5秒前
Mine发布了新的文献求助10
5秒前
WL发布了新的文献求助10
5秒前
6秒前
米九完成签到,获得积分10
6秒前
8秒前
8秒前
9秒前
9秒前
充电宝应助linmo采纳,获得10
9秒前
9秒前
9秒前
abcc1234发布了新的文献求助10
10秒前
10秒前
Kenzonvay发布了新的文献求助10
12秒前
许宗蓥完成签到,获得积分10
12秒前
chengzi发布了新的文献求助10
12秒前
HOXXXiii完成签到,获得积分10
12秒前
tonight发布了新的文献求助10
12秒前
Jenaloe发布了新的文献求助10
13秒前
赵佳璐发布了新的文献求助10
13秒前
SciGPT应助ihtw采纳,获得10
14秒前
15秒前
15秒前
16秒前
16秒前
18秒前
FashionBoy应助ln采纳,获得10
18秒前
19秒前
Mobius发布了新的文献求助10
20秒前
stream发布了新的文献求助10
21秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951173
求助须知:如何正确求助?哪些是违规求助? 3496521
关于积分的说明 11082942
捐赠科研通 3226974
什么是DOI,文献DOI怎么找? 1784145
邀请新用户注册赠送积分活动 868219
科研通“疑难数据库(出版商)”最低求助积分说明 801089