亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations

生成对抗网络 人工智能 计算机科学 对抗制 机器学习 生成语法 深度学习 断层(地质) 卷积神经网络 生物 古生物学
作者
Kai Zhou,Edward Diehl,Jiong Tang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:185: 109772-109772 被引量:99
标识
DOI:10.1016/j.ymssp.2022.109772
摘要

Fault detection and diagnosis of gear systems using vibration measurements play an important role in ensuring their functional reliability and safety. Computational intelligence, leveraging upon classification through various surrogate models, has recently demonstrated certain level of success. Major challenge however remains. The establishment of surrogate models generally requires large size of training data with specific labels corresponding to explicitly known gear fault conditions, which may not be available in practical applications. Both the size of available data and the respective labels may be quite limited due to the high cost, which hinders the diagnosis of unseen/unexpected faults with desired reliability. In this research we synthesize a deep convolutional generative adversarial network (DCGAN) to tackle this challenge. This new approach follows the semi-supervised learning concept, the performance of which is significantly enhanced by introducing additionally the inexpensive unlabeled data. The balanced adversarial effect between the discriminator and generator in DCGAN is realized by appropriately designing their architectures, which as a result can enable the high accuracy of diagnosis with scarce labeled data. More importantly, by taking full advantage of the rich fault signatures in the unlabeled data that point to the diverse unseen faults, the intrinsic correlation of underlying physics between the unseen and known faults can be implicitly elucidated via unique semi-supervised learning strategy featured in DCGAN. Therefore, the extended capability in diagnosing the unseen faults that are beyond the known faults in training dataset can be realized, which bears practical significance. Systematic case studies using experimental data acquired from a lab-scale gear system are carried out to validate the new diagnosis framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
3秒前
4秒前
时间尘埃完成签到,获得积分10
7秒前
7秒前
柳贯一发布了新的文献求助100
8秒前
11秒前
叶千山完成签到 ,获得积分10
12秒前
15秒前
15秒前
11122发布了新的文献求助10
15秒前
15秒前
婉莹完成签到 ,获得积分0
19秒前
温暖水云发布了新的文献求助10
20秒前
20秒前
23秒前
11122发布了新的文献求助10
25秒前
Kristopher完成签到 ,获得积分10
26秒前
情怀应助王佳俊采纳,获得10
27秒前
27秒前
汉堡包应助tdtk采纳,获得10
31秒前
Cast_Lappland发布了新的文献求助10
33秒前
37秒前
38秒前
王佳俊发布了新的文献求助10
42秒前
hankongli完成签到 ,获得积分10
42秒前
43秒前
沐阳完成签到 ,获得积分10
52秒前
王佳俊完成签到,获得积分10
55秒前
59秒前
1分钟前
壹玖一陆完成签到,获得积分20
1分钟前
1分钟前
1分钟前
豆都发布了新的文献求助10
1分钟前
耳东陈完成签到 ,获得积分10
1分钟前
壹玖一陆发布了新的文献求助10
1分钟前
科研通AI6应助壹玖一陆采纳,获得10
1分钟前
1分钟前
我是老大应助wuzihao采纳,获得10
1分钟前
max完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490