已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations

生成对抗网络 人工智能 计算机科学 对抗制 机器学习 生成语法 深度学习 断层(地质) 卷积神经网络 生物 古生物学
作者
Kai Zhou,Edward Diehl,Jiong Tang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:185: 109772-109772 被引量:99
标识
DOI:10.1016/j.ymssp.2022.109772
摘要

Fault detection and diagnosis of gear systems using vibration measurements play an important role in ensuring their functional reliability and safety. Computational intelligence, leveraging upon classification through various surrogate models, has recently demonstrated certain level of success. Major challenge however remains. The establishment of surrogate models generally requires large size of training data with specific labels corresponding to explicitly known gear fault conditions, which may not be available in practical applications. Both the size of available data and the respective labels may be quite limited due to the high cost, which hinders the diagnosis of unseen/unexpected faults with desired reliability. In this research we synthesize a deep convolutional generative adversarial network (DCGAN) to tackle this challenge. This new approach follows the semi-supervised learning concept, the performance of which is significantly enhanced by introducing additionally the inexpensive unlabeled data. The balanced adversarial effect between the discriminator and generator in DCGAN is realized by appropriately designing their architectures, which as a result can enable the high accuracy of diagnosis with scarce labeled data. More importantly, by taking full advantage of the rich fault signatures in the unlabeled data that point to the diverse unseen faults, the intrinsic correlation of underlying physics between the unseen and known faults can be implicitly elucidated via unique semi-supervised learning strategy featured in DCGAN. Therefore, the extended capability in diagnosing the unseen faults that are beyond the known faults in training dataset can be realized, which bears practical significance. Systematic case studies using experimental data acquired from a lab-scale gear system are carried out to validate the new diagnosis framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助衷医课代表采纳,获得10
1秒前
1秒前
shen发布了新的文献求助10
1秒前
拼搏的璇发布了新的文献求助10
4秒前
酒酿圆子发布了新的文献求助30
5秒前
5秒前
Wangyidi发布了新的文献求助10
6秒前
7秒前
7秒前
火的信仰完成签到 ,获得积分10
7秒前
8秒前
8秒前
顺心亦云发布了新的文献求助10
8秒前
9秒前
10秒前
喵了个咪发布了新的文献求助30
12秒前
卞仁吉发布了新的文献求助10
12秒前
zhujun发布了新的文献求助10
13秒前
peng123发布了新的文献求助10
15秒前
止血钳完成签到 ,获得积分10
16秒前
QYQ完成签到 ,获得积分10
16秒前
靓丽的擎完成签到,获得积分10
16秒前
万能图书馆应助22222采纳,获得10
17秒前
17秒前
18秒前
19秒前
Bob完成签到,获得积分10
19秒前
哆啦的空间站应助HMF采纳,获得20
20秒前
JOOCY关注了科研通微信公众号
20秒前
20秒前
wenqi发布了新的文献求助10
21秒前
敛茫发布了新的文献求助10
22秒前
22秒前
刘刘发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
JLY发布了新的文献求助10
25秒前
碘伏发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4943657
求助须知:如何正确求助?哪些是违规求助? 4208947
关于积分的说明 13084244
捐赠科研通 3988330
什么是DOI,文献DOI怎么找? 2183567
邀请新用户注册赠送积分活动 1199094
关于科研通互助平台的介绍 1111805