Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations

生成对抗网络 人工智能 计算机科学 对抗制 机器学习 生成语法 深度学习 断层(地质) 卷积神经网络 生物 古生物学
作者
Kai Zhou,Edward Diehl,Jiong Tang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:185: 109772-109772 被引量:99
标识
DOI:10.1016/j.ymssp.2022.109772
摘要

Fault detection and diagnosis of gear systems using vibration measurements play an important role in ensuring their functional reliability and safety. Computational intelligence, leveraging upon classification through various surrogate models, has recently demonstrated certain level of success. Major challenge however remains. The establishment of surrogate models generally requires large size of training data with specific labels corresponding to explicitly known gear fault conditions, which may not be available in practical applications. Both the size of available data and the respective labels may be quite limited due to the high cost, which hinders the diagnosis of unseen/unexpected faults with desired reliability. In this research we synthesize a deep convolutional generative adversarial network (DCGAN) to tackle this challenge. This new approach follows the semi-supervised learning concept, the performance of which is significantly enhanced by introducing additionally the inexpensive unlabeled data. The balanced adversarial effect between the discriminator and generator in DCGAN is realized by appropriately designing their architectures, which as a result can enable the high accuracy of diagnosis with scarce labeled data. More importantly, by taking full advantage of the rich fault signatures in the unlabeled data that point to the diverse unseen faults, the intrinsic correlation of underlying physics between the unseen and known faults can be implicitly elucidated via unique semi-supervised learning strategy featured in DCGAN. Therefore, the extended capability in diagnosing the unseen faults that are beyond the known faults in training dataset can be realized, which bears practical significance. Systematic case studies using experimental data acquired from a lab-scale gear system are carried out to validate the new diagnosis framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
两坨小腮红完成签到,获得积分10
刚刚
2秒前
科研通AI6.1应助月圆夜采纳,获得20
3秒前
4秒前
5秒前
科研通AI6.1应助娜娜采纳,获得10
6秒前
阿超发布了新的文献求助10
6秒前
一蓑烟雨完成签到,获得积分10
6秒前
WWWUBING完成签到,获得积分10
8秒前
9秒前
10秒前
Redinn完成签到,获得积分10
11秒前
eleven完成签到,获得积分10
13秒前
15秒前
ECHO完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
BNzQe5uB完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
19秒前
20秒前
luo完成签到,获得积分10
20秒前
WWW发布了新的文献求助30
23秒前
lzschaoshen发布了新的文献求助10
23秒前
Jm完成签到,获得积分10
23秒前
淡然的千雁完成签到,获得积分10
25秒前
脸小呆呆发布了新的文献求助10
25秒前
和春住完成签到,获得积分10
26秒前
馒头完成签到,获得积分10
26秒前
虚心代天完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
28秒前
33秒前
33秒前
alzheimer发布了新的文献求助10
34秒前
35秒前
彭于晏应助迷人星星采纳,获得10
35秒前
36秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742464
求助须知:如何正确求助?哪些是违规求助? 5408439
关于积分的说明 15345013
捐赠科研通 4883738
什么是DOI,文献DOI怎么找? 2625271
邀请新用户注册赠送积分活动 1574132
关于科研通互助平台的介绍 1531071