已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations

生成对抗网络 人工智能 计算机科学 对抗制 机器学习 生成语法 深度学习 断层(地质) 卷积神经网络 生物 古生物学
作者
Kai Zhou,Edward Diehl,Jiong Tang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:185: 109772-109772 被引量:68
标识
DOI:10.1016/j.ymssp.2022.109772
摘要

Fault detection and diagnosis of gear systems using vibration measurements play an important role in ensuring their functional reliability and safety. Computational intelligence, leveraging upon classification through various surrogate models, has recently demonstrated certain level of success. Major challenge however remains. The establishment of surrogate models generally requires large size of training data with specific labels corresponding to explicitly known gear fault conditions, which may not be available in practical applications. Both the size of available data and the respective labels may be quite limited due to the high cost, which hinders the diagnosis of unseen/unexpected faults with desired reliability. In this research we synthesize a deep convolutional generative adversarial network (DCGAN) to tackle this challenge. This new approach follows the semi-supervised learning concept, the performance of which is significantly enhanced by introducing additionally the inexpensive unlabeled data. The balanced adversarial effect between the discriminator and generator in DCGAN is realized by appropriately designing their architectures, which as a result can enable the high accuracy of diagnosis with scarce labeled data. More importantly, by taking full advantage of the rich fault signatures in the unlabeled data that point to the diverse unseen faults, the intrinsic correlation of underlying physics between the unseen and known faults can be implicitly elucidated via unique semi-supervised learning strategy featured in DCGAN. Therefore, the extended capability in diagnosing the unseen faults that are beyond the known faults in training dataset can be realized, which bears practical significance. Systematic case studies using experimental data acquired from a lab-scale gear system are carried out to validate the new diagnosis framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
一一应助JJ采纳,获得10
3秒前
jiangmax发布了新的文献求助10
6秒前
7秒前
8秒前
10秒前
Candice完成签到,获得积分0
10秒前
尹佳慧完成签到,获得积分10
11秒前
尹佳慧发布了新的文献求助10
14秒前
Chemisboy发布了新的文献求助10
15秒前
CipherSage应助小洲王先生采纳,获得10
17秒前
19秒前
充电宝应助wqt采纳,获得10
19秒前
科研通AI2S应助JJ采纳,获得10
20秒前
22秒前
jiangmax完成签到,获得积分10
22秒前
28秒前
NexusExplorer应助wxxxxxxxxxx采纳,获得10
28秒前
活力的采枫完成签到 ,获得积分10
29秒前
29秒前
songsong668发布了新的文献求助10
32秒前
626完成签到,获得积分10
35秒前
小庸医完成签到 ,获得积分10
35秒前
shgd完成签到 ,获得积分10
36秒前
ZSZ完成签到,获得积分10
43秒前
李小萌关注了科研通微信公众号
44秒前
45秒前
celine发布了新的文献求助10
49秒前
积极的香菇完成签到 ,获得积分10
53秒前
明理的天抒完成签到 ,获得积分10
53秒前
55秒前
57秒前
JJ完成签到,获得积分10
57秒前
59秒前
1分钟前
1分钟前
jasmine发布了新的文献求助10
1分钟前
HC完成签到 ,获得积分10
1分钟前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330276
求助须知:如何正确求助?哪些是违规求助? 2959850
关于积分的说明 8597504
捐赠科研通 2638376
什么是DOI,文献DOI怎么找? 1444303
科研通“疑难数据库(出版商)”最低求助积分说明 669096
邀请新用户注册赠送积分活动 656628