3-D Convolutional Neural Networks for RGB-D Salient Object Detection and Beyond

计算机科学 RGB颜色模型 卷积神经网络 人工智能 目标检测 模式识别(心理学) 对象(语法) 突出 计算机视觉
作者
Qian Chen,Zhenxi Zhang,Yanye Lu,Keren Fu,Qijun Zhao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 4309-4323 被引量:29
标识
DOI:10.1109/tnnls.2022.3202241
摘要

RGB-depth (RGB-D) salient object detection (SOD) recently has attracted increasing research interest, and many deep learning methods based on encoder–decoder architectures have emerged. However, most existing RGB-D SOD models conduct explicit and controllable cross-modal feature fusion either in the single encoder or decoder stage, which hardly guarantees sufficient cross-modal fusion ability. To this end, we make the first attempt in addressing RGB-D SOD through 3-D convolutional neural networks. The proposed model, named RD3D, aims at prefusion in the encoder stage and in-depth fusion in the decoder stage to effectively promote the full integration of RGB and depth streams. Specifically, RD3D first conducts prefusion across RGB and depth modalities through a 3-D encoder obtained by inflating 2-D ResNet and later provides in-depth feature fusion by designing a 3-D decoder equipped with rich back-projection paths (RBPPs) for leveraging the extensive aggregation ability of 3-D convolutions. Toward an improved model RD3D+, we propose to disentangle the conventional 3-D convolution into successive spatial and temporal convolutions and, meanwhile, discard unnecessary zero padding. This eventually results in a 2-D convolutional equivalence that facilitates optimization and reduces parameters and computation costs. Thanks to such a progressive-fusion strategy involving both the encoder and the decoder, effective and thorough interactions between the two modalities can be exploited and boost detection accuracy. As an additional boost, we also introduce channel-modality attention and its variant after each path of RBPP to attend to important features. Extensive experiments on seven widely used benchmark datasets demonstrate that RD3D and RD3D+ perform favorably against 14 state-of-the-art RGB-D SOD approaches in terms of five key evaluation metrics. Our code will be made publicly available at https://github.com/PPOLYpubki/RD3D .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Owen应助严笑容采纳,获得30
3秒前
JAJ发布了新的文献求助10
3秒前
王青文完成签到,获得积分10
4秒前
linshaoyu完成签到,获得积分10
4秒前
5秒前
yjf发布了新的文献求助10
5秒前
大小王发布了新的文献求助10
6秒前
L7.完成签到,获得积分10
7秒前
8秒前
零食不好吃完成签到,获得积分10
8秒前
8秒前
854fycchjh发布了新的文献求助10
10秒前
11秒前
脑洞疼应助刘羿采纳,获得10
11秒前
爆米花应助zino采纳,获得10
12秒前
ALICE渡发布了新的文献求助10
13秒前
SciGPT应助yjf采纳,获得10
13秒前
14秒前
lmm发布了新的文献求助10
15秒前
15秒前
15秒前
pbl发布了新的文献求助10
18秒前
18秒前
大小王完成签到,获得积分10
20秒前
21秒前
无安完成签到,获得积分10
21秒前
蔡一完成签到,获得积分10
21秒前
封闭货车发布了新的文献求助10
22秒前
24秒前
24秒前
24秒前
呆呆不呆Zz完成签到,获得积分10
27秒前
chrissylaiiii发布了新的文献求助10
27秒前
王阳洋应助aging123采纳,获得10
29秒前
领导范儿应助aging123采纳,获得10
29秒前
cai发布了新的文献求助10
29秒前
ch发布了新的文献求助10
29秒前
1am33in完成签到,获得积分10
30秒前
Kyone完成签到,获得积分10
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794