AQDnet: Deep Neural Network for Protein–Ligand Docking Simulation

对接(动物) 蛋白质-配体对接 计算机科学 配体(生物化学) 人工神经网络 蛋白质配体 计算 人工智能 生物系统 分子动力学 化学 计算化学 算法 生物 虚拟筛选 生物化学 医学 护理部 受体
作者
Koji Shiota,Akira Suma,Hiroyuki Ogawa,Takuya Yamaguchi,Akio Iida,Takahiro Hata,Mutsuyoshi Matsushita,Tatsuya Akutsu,Masaru Tateno
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (26): 23925-23935 被引量:4
标识
DOI:10.1021/acsomega.3c02411
摘要

We have developed an innovative system, AI QM Docking Net (AQDnet), which utilizes the three-dimensional structure of protein-ligand complexes to predict binding affinity. This system is novel in two respects: first, it significantly expands the training dataset by generating thousands of diverse ligand configurations for each protein-ligand complex and subsequently determining the binding energy of each configuration through quantum computation. Second, we have devised a method that incorporates the atom-centered symmetry function (ACSF), highly effective in describing molecular energies, for the prediction of protein-ligand interactions. These advancements have enabled us to effectively train a neural network to learn the protein-ligand quantum energy landscape (P-L QEL). Consequently, we have achieved a 92.6% top 1 success rate in the CASF-2016 docking power, placing first among all models assessed in the CASF-2016, thus demonstrating the exceptional docking performance of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
王菲完成签到,获得积分10
刚刚
cc完成签到,获得积分20
1秒前
后知后觉发布了新的文献求助10
1秒前
何垠禹发布了新的文献求助10
1秒前
勤劳尔丝完成签到 ,获得积分10
1秒前
烟花应助单纯的睫毛采纳,获得10
1秒前
Ava应助IFYK采纳,获得10
1秒前
1秒前
2秒前
zy完成签到,获得积分20
2秒前
小小申完成签到,获得积分10
2秒前
2秒前
海豚发布了新的文献求助10
2秒前
2秒前
汉堡包应助WANG.采纳,获得10
3秒前
dk完成签到,获得积分20
3秒前
3秒前
Wjh完成签到,获得积分10
4秒前
wanci应助随想采纳,获得10
4秒前
久桃完成签到,获得积分10
4秒前
星际帅帅完成签到,获得积分10
4秒前
山西球迷发布了新的文献求助10
4秒前
甜甜弘文发布了新的文献求助10
5秒前
5秒前
xixi发布了新的文献求助10
5秒前
6秒前
Lv发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
Owen应助菠萝李采纳,获得10
7秒前
7秒前
俞跃完成签到,获得积分10
7秒前
知不知发布了新的文献求助10
7秒前
natmed应助milka采纳,获得20
7秒前
黄义发布了新的文献求助10
7秒前
xu完成签到,获得积分10
8秒前
Inory007完成签到,获得积分10
8秒前
tianmafei发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483374
求助须知:如何正确求助?哪些是违规求助? 4584081
关于积分的说明 14394500
捐赠科研通 4513704
什么是DOI,文献DOI怎么找? 2473645
邀请新用户注册赠送积分活动 1459635
关于科研通互助平台的介绍 1433108