对接(动物)
蛋白质-配体对接
计算机科学
配体(生物化学)
人工神经网络
蛋白质配体
计算
人工智能
生物系统
分子动力学
化学
计算化学
算法
生物
虚拟筛选
生物化学
医学
护理部
受体
作者
Koji Shiota,Akira Suma,Hiroyuki Ogawa,Takuya Yamaguchi,Akio Iida,Takahiro Hata,Mutsuyoshi Matsushita,Tatsuya Akutsu,Masaru Tateno
出处
期刊:ACS omega
[American Chemical Society]
日期:2023-06-16
卷期号:8 (26): 23925-23935
被引量:4
标识
DOI:10.1021/acsomega.3c02411
摘要
We have developed an innovative system, AI QM Docking Net (AQDnet), which utilizes the three-dimensional structure of protein-ligand complexes to predict binding affinity. This system is novel in two respects: first, it significantly expands the training dataset by generating thousands of diverse ligand configurations for each protein-ligand complex and subsequently determining the binding energy of each configuration through quantum computation. Second, we have devised a method that incorporates the atom-centered symmetry function (ACSF), highly effective in describing molecular energies, for the prediction of protein-ligand interactions. These advancements have enabled us to effectively train a neural network to learn the protein-ligand quantum energy landscape (P-L QEL). Consequently, we have achieved a 92.6% top 1 success rate in the CASF-2016 docking power, placing first among all models assessed in the CASF-2016, thus demonstrating the exceptional docking performance of our model.
科研通智能强力驱动
Strongly Powered by AbleSci AI