Application of Machine Learning in Fuel Cell Research

计算机科学 机器学习 支持向量机 人工智能 人工神经网络 燃料电池 质子交换膜燃料电池 工程类 化学工程
作者
D. Su,Jiayang Zheng,Junjie Ma,Zizhe Dong,Zhangjie Chen,Yanzhou Qin
出处
期刊:Energies [MDPI AG]
卷期号:16 (11): 4390-4390 被引量:4
标识
DOI:10.3390/en16114390
摘要

A fuel cell is an energy conversion device that utilizes hydrogen energy through an electrochemical reaction. Despite their many advantages, such as high efficiency, zero emissions, and fast startup, fuel cells have not yet been fully commercialized due to deficiencies in service life, cost, and performance. Efficient evaluation methods for performance and service life are critical for the design and optimization of fuel cells. The purpose of this paper was to review the application of common machine learning algorithms in fuel cells. The significance and status of machine learning applications in fuel cells are briefly described. Common machine learning algorithms, such as artificial neural networks, support vector machines, and random forests are introduced, and their applications in fuel cell performance prediction and optimization are comprehensively elaborated. The review revealed that machine learning algorithms can be successfully used for performance prediction, service life prediction, and fault diagnosis in fuel cells, with good accuracy in solving nonlinear problems. Combined with optimization algorithms, machine learning models can further carry out the optimization of design and operating parameters to achieve multiple optimization goals with good accuracy and efficiency. It is expected that this review paper could help the reader comprehend the state of the art of machine learning applications in fuel fuels and shed light on further development directions in fuel cell research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LeafJin完成签到 ,获得积分10
刚刚
seebeg发布了新的文献求助10
1秒前
sxk795发布了新的文献求助10
2秒前
小刘不太懂完成签到,获得积分10
2秒前
2秒前
2秒前
Ironpillar发布了新的文献求助10
3秒前
wangting发布了新的文献求助30
4秒前
Rainy完成签到,获得积分20
4秒前
5秒前
吴晨曦发布了新的文献求助10
6秒前
6秒前
smile完成签到,获得积分10
6秒前
7秒前
小二郎应助zeannezg采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
爆米花应助吴晨曦采纳,获得10
11秒前
研友_8yNA5L完成签到,获得积分10
11秒前
wangting完成签到,获得积分10
11秒前
wjx发布了新的文献求助10
11秒前
wjx发布了新的文献求助10
11秒前
wjx发布了新的文献求助10
11秒前
mhl11应助lailai采纳,获得10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301779
求助须知:如何正确求助?哪些是违规求助? 2936343
关于积分的说明 8477312
捐赠科研通 2610089
什么是DOI,文献DOI怎么找? 1424995
科研通“疑难数据库(出版商)”最低求助积分说明 662239
邀请新用户注册赠送积分活动 646373