An eXplainable AI (XAI) model for text-based patent novelty analysis

新颖性 计算机科学 推论 过程(计算) 领域(数学) 领域(数学分析) 人工智能 透视图(图形) 数据科学 神学 数学 操作系统 数学分析 哲学 纯数学
作者
Hyejin Jang,Sunhye Kim,Byungun Yoon
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:231: 120839-120839 被引量:4
标识
DOI:10.1016/j.eswa.2023.120839
摘要

The technology development cycle continues to accelerate, and novelty analysis is becoming increasingly important for R&D planning as well as in the patent application process. Recently, thanks to significant advances in both text mining and natural language processing, researchers started to look into AI-assisted novelty analysis of technical content including patents. However, existing language models do not take into account the unique characteristics of technical elements in patent documents nor do they provide any explanation of their decisions including which technical elements represent a novelty. Therefore, we developed an eXplainable AI (XAI) model that evaluates novelty, takes into account the claim structure of a patent, and provides an explanation. The proposed framework of an XAI model for patent novelty consists of the following three parts: (1) dataset construction, (2) model architecture, and (3) inference process. The training dataset for patent novelty is constructed using a full-text dataset provided by the European Patent Office (EPO). A self-explainable novelty classification model is proposed and investigated. Using the fitted model, the inference results are then analyzed by extracting patents in the field of vehicle communication networks. The inference process is done by applying the fitted model to patents in the vehicle communication network field and can be expanded to address potential applications. The performance of the proposed model is then verified by comparing it with the results of similar studies. We also discuss practical applications from the perspective of patent examiners and technical planning practitioners. This study involves both an academic contribution that uses a novel approach to technology management via an XAI model and a practical contribution that can be used for patent analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅梦完成签到,获得积分10
刚刚
费米子完成签到,获得积分20
刚刚
宜一发布了新的文献求助10
1秒前
1秒前
1秒前
小马甲应助惠惠采纳,获得10
1秒前
wangyang完成签到 ,获得积分10
1秒前
cwn关注了科研通微信公众号
2秒前
2秒前
nini完成签到,获得积分10
2秒前
谢书南完成签到,获得积分10
2秒前
Khr1stINK发布了新的文献求助10
2秒前
2秒前
起司嗯发布了新的文献求助10
3秒前
英姑应助星星采纳,获得10
4秒前
4秒前
木野狐发布了新的文献求助10
4秒前
5秒前
搬砖道人发布了新的文献求助10
5秒前
自然的初丹完成签到,获得积分20
5秒前
泡泡鱼完成签到 ,获得积分10
6秒前
柳叶完成签到,获得积分10
6秒前
杂货铺老板娘完成签到,获得积分10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
通~发布了新的文献求助10
6秒前
soso应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
7秒前
dyh6802完成签到,获得积分10
7秒前
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
kk应助科研通管家采纳,获得20
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得20
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794