A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds

二嗪 密度泛函理论 材料科学 数量结构-活动关系 腐蚀 均方误差 衍生工具(金融) 生物系统 计算机科学 计算化学 机器学习 数学 统计 化学 有机化学 冶金 经济 金融经济学 生物
作者
Muhamad Akrom,Supriadi Rustad,Adhitya Gandaryus Saputro,Agus Ramelan,Fadjar Fathurrahman,Hermawan Kresno Dipojono
出处
期刊:Materials today communications [Elsevier BV]
卷期号:35: 106402-106402 被引量:2
标识
DOI:10.1016/j.mtcomm.2023.106402
摘要

This study proposes a novel approach that combines machine learning (ML) and density functional theory (DFT) methods to construct a quantitative structure-properties relationship (QSPR) model for diazine derivatives as anti-corrosion inhibitors. A dataset is constructed by combining three existing diazine isomer datasets to represent diazine compounds. Thirty-two different ML algorithms were implemented on the dataset, and the gradient boosting regressor (GBR) model was identified as the best predictive model for diazine and each isomer dataset based on the coefficient of determination (R2) and root mean square error (RMSE) metric values. This consistency was also observed when the GBR model was implemented on four other diazine derivatives, resulting in high corrosion inhibition efficiency (CIE) values ranging from 85.02 % to 94.99 %. The DFT calculations for these derivatives also showed strong adsorption energies ranging from − 4.41 to − 6.09 eV, in line with the CIE trend obtained from the ML prediction. This novel approach can provide insights into the properties of prospective organic corrosion inhibitors prior to experimental investigations, which could accelerate the development of new and effective organic corrosion inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山复尔尔应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
Mr.Young完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
zhijianzhe应助科研通管家采纳,获得50
2秒前
脑洞疼应助科研通管家采纳,获得30
2秒前
pcr163应助科研通管家采纳,获得200
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得20
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
ED应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
彭于彦祖应助科研通管家采纳,获得30
3秒前
852应助科研通管家采纳,获得10
3秒前
dypdyp应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
山复尔尔应助科研通管家采纳,获得10
3秒前
我心匪石不可转完成签到,获得积分10
3秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI5应助竹筏过海采纳,获得100
4秒前
5秒前
5秒前
6秒前
666应助白开水采纳,获得10
6秒前
6秒前
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966615
求助须知:如何正确求助?哪些是违规求助? 3512055
关于积分的说明 11161483
捐赠科研通 3246880
什么是DOI,文献DOI怎么找? 1793552
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420