A Low-Carbon and Economic Dispatch Strategy for a Multi-Microgrid Based on a Meteorological Classification to Handle the Uncertainty of Wind Power

风力发电 计算机科学 聚类分析 电力系统 随机性 可再生能源 模棱两可 微电网 稳健优化 数学优化 功率(物理) 工程类 人工智能 控制(管理) 数学 电气工程 物理 统计 量子力学 程序设计语言
作者
Yang Liu,Xueling Li,Yamei Liu
出处
期刊:Sensors [MDPI AG]
卷期号:23 (11): 5350-5350
标识
DOI:10.3390/s23115350
摘要

In a modern power system, reducing carbon emissions has become a significant goal in mitigating the impact of global warming. Therefore, renewable energy sources, particularly wind-power generation, have been extensively implemented in the system. Despite the advantages of wind power, its uncertainty and randomness lead to critical security, stability, and economic issues in the power system. Recently, multi-microgrid systems (MMGSs) have been considered as a suitable wind-power deployment candidate. Although wind power can be efficiently utilized by MMGSs, uncertainty and randomness still have a significant impact on the dispatching and operation of the system. Therefore, to address the wind power uncertainty issue and achieve an optimal dispatching strategy for MMGSs, this paper presents an adjustable robust optimization (ARO) model based on meteorological clustering. Firstly, the maximum relevance minimum redundancy (MRMR) method and the CURE clustering algorithm are employed for meteorological classification in order to better identify wind patterns. Secondly, a conditional generative adversarial network (CGAN) is adopted to enrich the wind-power datasets with different meteorological patterns, resulting in the construction of ambiguity sets. Thirdly, the uncertainty sets that are finally employed by the ARO framework to establish a two-stage cooperative dispatching model for MMGS can be derived from the ambiguity sets. Additionally, stepped carbon trading is introduced to control the carbon emissions of MMGSs. Finally, the alternative direction method of multipliers (ADMM) and the column and constraint generation (C&CG) algorithm are adopted to achieve a decentralized solution for the dispatching model of MMGSs. Case studies indicate that the presented model has a great performance in improving the wind-power description accuracy, increasing cost efficiency, and reducing system carbon emissions. However, the case studies also report that the approach consumes a relative long running time. Therefore, in future research, the solution algorithm will be further improved for the purpose of raising the efficiency of the solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qq完成签到,获得积分20
1秒前
QQ完成签到,获得积分20
1秒前
1秒前
3秒前
检检边lin完成签到,获得积分10
3秒前
5秒前
euy发布了新的文献求助10
5秒前
天天快乐应助melon采纳,获得10
5秒前
愉快的无招完成签到,获得积分10
5秒前
6秒前
zzk0307完成签到,获得积分10
6秒前
yar应助爱笑的万天采纳,获得10
7秒前
共享精神应助qq采纳,获得10
7秒前
Mimi发布了新的文献求助10
7秒前
7秒前
TQY发布了新的文献求助10
7秒前
7秒前
shiyu完成签到,获得积分10
8秒前
moon完成签到,获得积分10
8秒前
赵振辉发布了新的文献求助10
8秒前
大个应助光影采纳,获得10
9秒前
10秒前
11秒前
田様应助工藤新一采纳,获得10
11秒前
思源应助整齐的泽洋采纳,获得10
11秒前
霜揽月发布了新的文献求助10
12秒前
YingjiaHu发布了新的文献求助10
12秒前
hanyang965发布了新的文献求助10
13秒前
Abner发布了新的文献求助10
15秒前
jo完成签到,获得积分10
15秒前
16秒前
善学以致用应助我能行采纳,获得10
16秒前
赵振辉完成签到,获得积分10
16秒前
16秒前
哈哈完成签到,获得积分10
17秒前
白菜包子完成签到,获得积分10
17秒前
STAR完成签到 ,获得积分10
18秒前
鳗鱼凡波发布了新的文献求助10
18秒前
yifanchen完成签到,获得积分10
19秒前
唐喻菲发布了新的文献求助10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310354
求助须知:如何正确求助?哪些是违规求助? 2943290
关于积分的说明 8513642
捐赠科研通 2618527
什么是DOI,文献DOI怎么找? 1431125
科研通“疑难数据库(出版商)”最低求助积分说明 664383
邀请新用户注册赠送积分活动 649580