已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Low-Carbon and Economic Dispatch Strategy for a Multi-Microgrid Based on a Meteorological Classification to Handle the Uncertainty of Wind Power

风力发电 计算机科学 聚类分析 电力系统 随机性 可再生能源 模棱两可 微电网 稳健优化 数学优化 功率(物理) 工程类 人工智能 控制(管理) 数学 电气工程 物理 统计 量子力学 程序设计语言
作者
Yang Liu,Xueling Li,Yamei Liu
出处
期刊:Sensors [MDPI AG]
卷期号:23 (11): 5350-5350
标识
DOI:10.3390/s23115350
摘要

In a modern power system, reducing carbon emissions has become a significant goal in mitigating the impact of global warming. Therefore, renewable energy sources, particularly wind-power generation, have been extensively implemented in the system. Despite the advantages of wind power, its uncertainty and randomness lead to critical security, stability, and economic issues in the power system. Recently, multi-microgrid systems (MMGSs) have been considered as a suitable wind-power deployment candidate. Although wind power can be efficiently utilized by MMGSs, uncertainty and randomness still have a significant impact on the dispatching and operation of the system. Therefore, to address the wind power uncertainty issue and achieve an optimal dispatching strategy for MMGSs, this paper presents an adjustable robust optimization (ARO) model based on meteorological clustering. Firstly, the maximum relevance minimum redundancy (MRMR) method and the CURE clustering algorithm are employed for meteorological classification in order to better identify wind patterns. Secondly, a conditional generative adversarial network (CGAN) is adopted to enrich the wind-power datasets with different meteorological patterns, resulting in the construction of ambiguity sets. Thirdly, the uncertainty sets that are finally employed by the ARO framework to establish a two-stage cooperative dispatching model for MMGS can be derived from the ambiguity sets. Additionally, stepped carbon trading is introduced to control the carbon emissions of MMGSs. Finally, the alternative direction method of multipliers (ADMM) and the column and constraint generation (C&CG) algorithm are adopted to achieve a decentralized solution for the dispatching model of MMGSs. Case studies indicate that the presented model has a great performance in improving the wind-power description accuracy, increasing cost efficiency, and reducing system carbon emissions. However, the case studies also report that the approach consumes a relative long running time. Therefore, in future research, the solution algorithm will be further improved for the purpose of raising the efficiency of the solution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研之路完成签到,获得积分10
1秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
寻道图强应助科研通管家采纳,获得50
3秒前
3秒前
wanci应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
水shui完成签到,获得积分10
4秒前
木子完成签到 ,获得积分10
5秒前
开心夏真发布了新的文献求助10
5秒前
6秒前
聪明勇敢有力气完成签到 ,获得积分10
7秒前
糊涂涂完成签到 ,获得积分10
13秒前
lc发布了新的文献求助10
18秒前
18秒前
18秒前
Oscillator发布了新的文献求助10
20秒前
aaaa完成签到,获得积分20
21秒前
完美世界应助庾稀采纳,获得10
21秒前
打打应助xw采纳,获得30
22秒前
开心夏真完成签到,获得积分10
23秒前
23秒前
财荫夹印发布了新的文献求助10
24秒前
25秒前
lan__完成签到,获得积分10
27秒前
29秒前
30秒前
陆沉发布了新的文献求助10
30秒前
彦子完成签到 ,获得积分10
32秒前
悠悠完成签到 ,获得积分10
34秒前
科研通AI2S应助smm采纳,获得10
34秒前
aaaa发布了新的文献求助10
35秒前
Logan应助lan__采纳,获得10
37秒前
秋蚓完成签到 ,获得积分10
39秒前
40秒前
试验顺利完成签到 ,获得积分10
41秒前
46秒前
南冥完成签到 ,获得积分10
49秒前
无花果应助勤恳曲奇采纳,获得10
52秒前
积极向上发布了新的文献求助10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772121
求助须知:如何正确求助?哪些是违规求助? 5596217
关于积分的说明 15429142
捐赠科研通 4905232
什么是DOI,文献DOI怎么找? 2639279
邀请新用户注册赠送积分活动 1587204
关于科研通互助平台的介绍 1542058