Improved RO performance in organic aqueous solutions of methyl-functionalized silica membranes modified by atmospheric-pressure plasma

水溶液 大气压力 大气压等离子体 等离子体 化学工程 聚合膜 化学 有机化学 生物化学 量子力学 海洋学 物理 地质学 工程类
作者
Shun Aoyama,Hiroki Nagasawa,Norihiro Moriyama,Masakoto Kanezashi,Toshinori Tsuru
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:705: 122898-122898 被引量:4
标识
DOI:10.1016/j.memsci.2024.122898
摘要

The development of an effective organic solvent recovery process via reverse osmosis (RO) is an emerging issue for sustainable chemical industries. Organosilica membranes are key candidates for the dehydration of aqueous organic solvent solutions by RO owing to their high mechanical strength and excellent resistance to water and organic solvents. In this study, the pore size and surface affinity of an organosilica membrane were adjusted through atmospheric-pressure plasma surface modification to improve membrane selectivity while maintaining H2O permeance. The membranes were evaluated in various aqueous solution systems, ranging from alcohols, such as MeOH, EtOH, IPA, and t-BuOH, to aprotic organic solvents, including acetonitrile, N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, and acetone. These membranes exhibited excellent stability at high pressures (∼12.5 MPa) in the H2O/solvent = 95/5%–85/15% concentration range. Plasma modification markedly enhanced the selectivity while maintaining H2O permeance in all systems owing to the controlled pore size and affinity. For instance, in the H2O/DMF (90/10 wt%) system at 50°C and 6 MPa, the pristine and plasma-modified organosilica membranes had similar H2O fluxes of 1.0 and 1.2 kg m−2 h−1, and plasma modification increased the rejection from 85% to 95%. In addition, an activity-based permeation model was used to analyze permeation properties. The experimental points were successfully fitted with the theoretical curves, which revealed that the RO performance of the plasma-modified membranes could be predicted accurately by the activity-based permeation model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zzq发布了新的文献求助10
刚刚
SS_完成签到,获得积分10
刚刚
科研通AI6.1应助哦啦啦采纳,获得10
1秒前
852应助dzz采纳,获得10
1秒前
1秒前
芒果完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
CodeCraft应助sci来采纳,获得30
2秒前
2秒前
TBHP完成签到,获得积分10
3秒前
Honor发布了新的文献求助30
3秒前
坦率的松发布了新的文献求助10
3秒前
江颖芋发布了新的文献求助10
3秒前
科研通AI2S应助Maisie采纳,获得10
3秒前
机灵冬天发布了新的文献求助10
3秒前
bioglia完成签到,获得积分10
4秒前
4秒前
4秒前
加薪发布了新的文献求助10
4秒前
classic发布了新的文献求助10
4秒前
4秒前
6秒前
HeWang发布了新的文献求助10
6秒前
Ellen完成签到,获得积分10
6秒前
SY发布了新的文献求助10
6秒前
michael发布了新的文献求助30
6秒前
6秒前
zmz驳回了华仔应助
6秒前
7秒前
烂漫的初蓝完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
东方元语发布了新的文献求助10
9秒前
JamesPei应助独特的如雪采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760209
求助须知:如何正确求助?哪些是违规求助? 5523899
关于积分的说明 15396860
捐赠科研通 4897047
什么是DOI,文献DOI怎么找? 2634010
邀请新用户注册赠送积分活动 1582088
关于科研通互助平台的介绍 1537582