化学
析氧
过电位
电催化剂
催化作用
电解水
无机化学
电解
物理化学
电化学
有机化学
电极
电解质
作者
Jiangwei Chang,Yuanyuan Shi,Han Wu,Jingkun Yu,Jing Wen,Siyang Wang,Geoffrey I. N. Waterhouse,Zhiyong Tang,Siyu Lu
摘要
The discovery of efficient and stable electrocatalysts for oxygen evolution reaction (OER) in acid is vital for the commercialization of the proton-exchange membrane water electrolyzer. In this work, we demonstrate that short-range Ru atom arrays with near-ideal Ru–Ru interatomic distances and a unique Ru–O hybridization state can trigger direct O*–O* radical coupling to form an intermediate O*–O*-Ru configuration during acidic OER without generating OOH* species. Further, the Ru atom arrays suppress the participation of lattice oxygen in the OER and the dissolution of active Ru. Benefiting from these advantages, the as-designed Ru array-Co3O4 electrocatalyst breaks the activity/stability trade-off that plagues RuO2-based electrocatalysts, delivering an excellent OER overpotential of only 160 mV at 10 mA cm–2 in 0.5 M H2SO4 and outstanding durability during 1500 h operation, representing one of the best acid-stable OER electrocatalysts reported to date. 18O-labeled operando spectroscopic measurements together with theoretical investigations revealed that the short-range Ru atom arrays switched on an oxide path mechanism (OPM) during the OER. Our work not only guides the design of improved acidic OER catalysts but also encourages the pursuit of short-range metal atom array-based electrocatalysts for other electrocatalytic reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI