Efficiency comparison of MCMC and Transport Map Bayesian posterior estimation for structural health monitoring

马尔科夫蒙特卡洛 贝叶斯概率 后验概率 结构健康监测 贝叶斯估计量 计算机科学 贝叶斯定理 估计 统计 人工智能 数据挖掘 计量经济学 数学 工程类 结构工程 系统工程
作者
Jan Grashorn,Matteo Broggi,Ludovic Chamoin,Michael Beer
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:216: 111440-111440
标识
DOI:10.1016/j.ymssp.2024.111440
摘要

In this paper, an alternative to solving Bayesian inverse problems for structural health monitoring based on a variational formulation with so-called transport maps is examined. The Bayesian inverse formulation is a widely used tool in structural health monitoring applications. While Markov Chain Monte Carlo (MCMC) methods are often implemented in these settings, they come with the problem of using many model evaluations, which in turn can become quite costly. We focus here on recent developments in the field of transport theory, where the problem is formulated as finding a deterministic, invertible mapping between some easy to evaluate reference density and the posterior. The resulting variational formulation can be solved with integration and optimization methods. We develop a general formulation for the application of transport maps to vibration-based structural health monitoring. Further, we study influences of different integration approaches on the efficiency and accuracy of the transport map approach and compare it to the Transitional MCMC algorithm, a widely used method for structural identification. Both methods are applied to a lower-dimensional dynamic model with uni- and multi-modal properties, as well as to a higher-dimensional neural network surrogate system of an airplane structure. We find that transport maps have a significant increase in accuracy and efficiency, when used in the right circumstances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feifan123发布了新的文献求助30
刚刚
2秒前
4秒前
寄琴发布了新的文献求助30
4秒前
辛勤的刺猬完成签到 ,获得积分10
5秒前
6秒前
6秒前
猫一猫发布了新的文献求助10
7秒前
7秒前
大炮弹发布了新的文献求助10
8秒前
小怪发布了新的文献求助10
9秒前
taotao完成签到 ,获得积分10
10秒前
Twonej应助t糖采纳,获得30
10秒前
JLLLLLLLL完成签到,获得积分10
10秒前
11秒前
12秒前
关心则乱发布了新的文献求助10
12秒前
大模型应助大炮弹采纳,获得10
13秒前
寄琴完成签到,获得积分10
13秒前
wml应助lancelot采纳,获得10
14秒前
yy关闭了yy文献求助
14秒前
Xenia发布了新的文献求助10
15秒前
岷瓮发布了新的文献求助10
15秒前
王雯雯发布了新的文献求助30
15秒前
15秒前
16秒前
16秒前
星辰大海应助jy采纳,获得10
16秒前
张凡完成签到 ,获得积分10
17秒前
17秒前
平常语山完成签到,获得积分10
18秒前
18秒前
Jyy77完成签到 ,获得积分10
18秒前
19秒前
猫一猫完成签到,获得积分10
19秒前
autumoon完成签到,获得积分10
19秒前
曦耀发布了新的文献求助30
20秒前
TiY完成签到,获得积分10
20秒前
yiling发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632939
求助须知:如何正确求助?哪些是违规求助? 4728267
关于积分的说明 14984596
捐赠科研通 4790942
什么是DOI,文献DOI怎么找? 2558668
邀请新用户注册赠送积分活动 1519069
关于科研通互助平台的介绍 1479405