Efficiency comparison of MCMC and Transport Map Bayesian posterior estimation for structural health monitoring

马尔科夫蒙特卡洛 贝叶斯概率 后验概率 结构健康监测 贝叶斯估计量 计算机科学 贝叶斯定理 估计 统计 人工智能 数据挖掘 计量经济学 数学 工程类 结构工程 系统工程
作者
Jan Grashorn,Matteo Broggi,Ludovic Chamoin,Michael Beer
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:216: 111440-111440
标识
DOI:10.1016/j.ymssp.2024.111440
摘要

In this paper, an alternative to solving Bayesian inverse problems for structural health monitoring based on a variational formulation with so-called transport maps is examined. The Bayesian inverse formulation is a widely used tool in structural health monitoring applications. While Markov Chain Monte Carlo (MCMC) methods are often implemented in these settings, they come with the problem of using many model evaluations, which in turn can become quite costly. We focus here on recent developments in the field of transport theory, where the problem is formulated as finding a deterministic, invertible mapping between some easy to evaluate reference density and the posterior. The resulting variational formulation can be solved with integration and optimization methods. We develop a general formulation for the application of transport maps to vibration-based structural health monitoring. Further, we study influences of different integration approaches on the efficiency and accuracy of the transport map approach and compare it to the Transitional MCMC algorithm, a widely used method for structural identification. Both methods are applied to a lower-dimensional dynamic model with uni- and multi-modal properties, as well as to a higher-dimensional neural network surrogate system of an airplane structure. We find that transport maps have a significant increase in accuracy and efficiency, when used in the right circumstances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Sean发布了新的文献求助10
2秒前
shinn发布了新的文献求助10
4秒前
何劲松完成签到,获得积分10
5秒前
青衣北风发布了新的文献求助10
7秒前
极品男大完成签到,获得积分20
7秒前
幽梦挽歌完成签到,获得积分20
7秒前
8秒前
万能图书馆应助KD采纳,获得10
9秒前
9秒前
mirror发布了新的文献求助20
10秒前
10秒前
12秒前
空空完成签到,获得积分10
12秒前
Mingchun发布了新的文献求助10
14秒前
Hq发布了新的文献求助20
15秒前
匆匆完成签到,获得积分10
15秒前
星辰大海应助Ahiterin采纳,获得10
15秒前
15秒前
blingl发布了新的文献求助30
15秒前
16秒前
17秒前
17秒前
若月画萤完成签到,获得积分10
18秒前
Summering666完成签到,获得积分10
18秒前
上官若男应助shinn采纳,获得10
19秒前
20秒前
小赟发布了新的文献求助10
21秒前
wulalala发布了新的文献求助30
21秒前
鹬鸱发布了新的文献求助10
22秒前
油炸小麻花完成签到,获得积分10
23秒前
猪皮恶人发布了新的文献求助10
24秒前
Hq完成签到,获得积分10
25秒前
Mingchun完成签到,获得积分10
26秒前
丹妮完成签到 ,获得积分10
27秒前
wulalala完成签到,获得积分10
27秒前
27秒前
27秒前
33完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967654
求助须知:如何正确求助?哪些是违规求助? 3512812
关于积分的说明 11165110
捐赠科研通 3247884
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528