Efficiency comparison of MCMC and Transport Map Bayesian posterior estimation for structural health monitoring

马尔科夫蒙特卡洛 贝叶斯概率 后验概率 结构健康监测 贝叶斯估计量 计算机科学 贝叶斯定理 估计 统计 人工智能 数据挖掘 计量经济学 数学 工程类 结构工程 系统工程
作者
Jan Grashorn,Matteo Broggi,Ludovic Chamoin,Michael Beer
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:216: 111440-111440
标识
DOI:10.1016/j.ymssp.2024.111440
摘要

In this paper, an alternative to solving Bayesian inverse problems for structural health monitoring based on a variational formulation with so-called transport maps is examined. The Bayesian inverse formulation is a widely used tool in structural health monitoring applications. While Markov Chain Monte Carlo (MCMC) methods are often implemented in these settings, they come with the problem of using many model evaluations, which in turn can become quite costly. We focus here on recent developments in the field of transport theory, where the problem is formulated as finding a deterministic, invertible mapping between some easy to evaluate reference density and the posterior. The resulting variational formulation can be solved with integration and optimization methods. We develop a general formulation for the application of transport maps to vibration-based structural health monitoring. Further, we study influences of different integration approaches on the efficiency and accuracy of the transport map approach and compare it to the Transitional MCMC algorithm, a widely used method for structural identification. Both methods are applied to a lower-dimensional dynamic model with uni- and multi-modal properties, as well as to a higher-dimensional neural network surrogate system of an airplane structure. We find that transport maps have a significant increase in accuracy and efficiency, when used in the right circumstances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
慈祥的不愁完成签到 ,获得积分10
3秒前
MrX发布了新的文献求助10
3秒前
3秒前
内向初瑶完成签到,获得积分10
3秒前
刘刘完成签到,获得积分10
3秒前
4秒前
gm完成签到,获得积分10
5秒前
下雨了完成签到,获得积分10
5秒前
5秒前
fxs完成签到,获得积分10
5秒前
汉堡包应助HYT采纳,获得10
5秒前
6秒前
凌爽完成签到 ,获得积分10
6秒前
咕噜噜发布了新的文献求助10
6秒前
gaochuwuyu01完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
丰富伊完成签到,获得积分10
7秒前
bamboo完成签到,获得积分10
8秒前
luo发布了新的文献求助10
8秒前
lll发布了新的文献求助10
8秒前
明理珩发布了新的文献求助10
8秒前
9秒前
9秒前
爱学习发布了新的文献求助10
9秒前
左鸣发布了新的文献求助10
10秒前
赫哲瀚发布了新的文献求助30
10秒前
刻苦大门完成签到 ,获得积分10
11秒前
可靠F完成签到,获得积分20
11秒前
ccon完成签到,获得积分10
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助30
13秒前
干爆瓶颈发布了新的文献求助10
13秒前
Ava应助alu采纳,获得10
13秒前
深情安青应助xixi采纳,获得10
14秒前
公西翠萱发布了新的文献求助10
14秒前
喵喵发布了新的文献求助10
14秒前
科研通AI2S应助miao3718采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719543
求助须知:如何正确求助?哪些是违规求助? 5256663
关于积分的说明 15288927
捐赠科研通 4869380
什么是DOI,文献DOI怎么找? 2614754
邀请新用户注册赠送积分活动 1564750
关于科研通互助平台的介绍 1521972