DCDiff: Dual-Granularity Cooperative Diffusion Models for Pathology Image Analysis

粒度 对偶(语法数字) 扩散 图像处理 计算机科学 图像(数学) 人工智能 计算机视觉 物理 艺术 文学类 热力学 操作系统
作者
Jiansong Fan,Tianxu Lv,Pei Wang,Xiaoyan Hong,Yuan Liu,Chunjuan Jiang,Jianming Ni,Lihua Li,Xiang Pan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3420804
摘要

Whole Slide Images (WSIs) are paramount in the medical field, with extensive applications in disease diagnosis and treatment. Recently, many deep-learning methods have been used to classify WSIs. However, these methods are inadequate for accurately analyzing WSIs as they treat regions in WSIs as isolated entities and ignore contextual information. To address this challenge, we propose a novel Dual-Granularity Cooperative Diffusion Model (DCDiff) for the precise classification of WSIs. Specifically, we first design a cooperative forward and reverse diffusion strategy, utilizing fine-granularity and coarse-granularity to regulate each diffusion step and gradually improve context awareness. To exchange information between granularities, we propose a coupled U-Net for dual-granularity denoising, which efficiently integrates dual-granularity consistency information using the designed Fine- and Coarse-granularity Cooperative Aware (FCCA) model. Ultimately, the cooperative diffusion features extracted by DCDiff can achieve cross-sample perception from the reconstructed distribution of training samples. Experiments on three public WSI datasets show that the proposed method can achieve superior performance over state-of-the-art methods. The code is available at https://github.com/hemo0826/DCDiff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Z小姐完成签到 ,获得积分10
刚刚
刚刚
1秒前
CD完成签到,获得积分10
1秒前
眯眯眼的衬衫应助燕玲采纳,获得10
1秒前
lwj完成签到,获得积分10
2秒前
SAW完成签到,获得积分10
2秒前
2秒前
3秒前
凤凰山发布了新的文献求助10
3秒前
舒心靖琪完成签到 ,获得积分10
3秒前
清欢完成签到 ,获得积分20
3秒前
alick完成签到,获得积分10
4秒前
科研通AI2S应助拉斯特迪亚采纳,获得10
4秒前
小飞七应助jiangnan采纳,获得10
5秒前
5秒前
5秒前
独角兽完成签到 ,获得积分10
5秒前
lzqlzqlzqlzqlzq完成签到,获得积分10
6秒前
Geng完成签到,获得积分10
7秒前
7秒前
宇_完成签到,获得积分20
7秒前
香蕉觅云应助NEMO采纳,获得10
7秒前
8秒前
8秒前
星辰大海应助247793325采纳,获得20
8秒前
8秒前
灵巧荆发布了新的文献求助10
8秒前
8秒前
haimianbaobao完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
SAW发布了新的文献求助10
11秒前
爆米花应助LiShin采纳,获得10
11秒前
Jasper应助jxcandice采纳,获得10
12秒前
12秒前
Owen应助雾见春采纳,获得10
13秒前
aiming发布了新的文献求助10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794