已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detection and segmentation of wire rope surface deficiency based on YOLOv8 and U-Net

绳子 钢丝绳 网(多面体) 分割 曲面(拓扑) 计算机科学 人工智能 工程类 数学 结构工程 算法 几何学
作者
Wang Zhen-bin,Han Meishuai,Zhang Xun,Haisheng Li,Yinghua Chen,Miao Wenyu,Xiyao Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 096006-096006 被引量:1
标识
DOI:10.1088/1361-6501/ad5613
摘要

Abstract The presence of surface defects in wire ropes (WR) may lead to potential safety hazards and performance degradation, necessitating timely detection and repair. Hence, this paper proposes a method for detecting surface defects in WR based on the deep learning models YOLOv8s and U-Net, aiming to identify surface defects in real-time and extract defect data, thereby enhancing the efficiency of surface defect detection. Firstly, the ECA attention mechanism is incorporated into the YOLOv8 algorithm to enhance detection performance, achieving real-time localization and identification of surface defects in WR. Secondly, in order to obtain detailed defect data, the U-Net semantic segmentation algorithm is employed for morphological segmentation of defects, thereby obtaining the contour features of surface defects. Finally, in conjunction with OpenCV technology, the segmentation results of the defects are quantified to extract data, obtaining parameters such as the area and perimeter of the surface defects in the WR. Experimental results demonstrate that the improved YOLOv8-ECA model exhibits good accuracy and robustness, with the model’s mAP@0.5 reaching 84.78%, an increase of 1.13% compared to the base model, an accuracy rate of 90.70%, and an FPS of 65. The U-Net model can efficiently perform segmentation processing on surface defects of WR, with an mIOU of 83.54% and an mPA of 90.78%. This method can rapidly, accurately, and specifically detect surface defects in WR, which is of significant importance in preventing industrial production safety accidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
powozhi13579发布了新的文献求助10
4秒前
仁爱的尔蓝完成签到 ,获得积分10
4秒前
4秒前
wjw发布了新的文献求助10
5秒前
Orange应助小郭采纳,获得10
6秒前
1234发布了新的文献求助10
7秒前
充电宝应助赵赵赵采纳,获得10
8秒前
慕青应助TerryWang采纳,获得10
8秒前
临床AI完成签到,获得积分20
8秒前
9秒前
自然秋双发布了新的文献求助10
9秒前
鳗鱼厉发布了新的文献求助10
9秒前
10秒前
猫七发布了新的文献求助10
13秒前
17秒前
领导范儿应助鳗鱼厉采纳,获得20
18秒前
20秒前
21秒前
PengM发布了新的文献求助10
22秒前
22秒前
23秒前
ableble完成签到,获得积分10
24秒前
顾矜应助初七123采纳,获得10
24秒前
渣渣完成签到 ,获得积分10
24秒前
25秒前
白云垛发布了新的文献求助10
25秒前
是呀完成签到 ,获得积分10
28秒前
天天快乐应助yang采纳,获得10
28秒前
28秒前
曾是风景幸会完成签到,获得积分10
30秒前
30秒前
hmm完成签到 ,获得积分10
31秒前
31秒前
32秒前
35秒前
小鼠鼠的小狐狸完成签到,获得积分20
35秒前
初七123发布了新的文献求助10
36秒前
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459894
求助须知:如何正确求助?哪些是违规求助? 3054231
关于积分的说明 9040926
捐赠科研通 2743462
什么是DOI,文献DOI怎么找? 1504918
科研通“疑难数据库(出版商)”最低求助积分说明 695556
邀请新用户注册赠送积分活动 694763