Integration of Clinical Trial Spatial Multiomics Analysis and Virtual Clinical Trials Enables Immunotherapy Response Prediction and Biomarker Discovery

临床试验 生物标志物 生物标志物发现 免疫疗法 计算生物学 医学 肿瘤科 癌症 内科学 生物 蛋白质组学 遗传学 基因
作者
Shuming Zhang,Atul Deshpande,Babita K. Verma,Hanwen Wang,Haoyang Mi,Long Yuan,Won Jin Ho,Elizabeth M. Jaffee,Qingfeng Zhu,Robert A. Anders,Mark Yarchoan,Luciane T. Kagohara,Elana J. Fertig,Aleksander S. Popel
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (16): 2734-2748 被引量:7
标识
DOI:10.1158/0008-5472.can-24-0943
摘要

Due to the lack of treatment options, there remains a need to advance new therapeutics in hepatocellular carcinoma (HCC). The traditional approach moves from initial molecular discovery through animal models to human trials to advance novel systemic therapies that improve treatment outcomes for patients with cancer. Computational methods that simulate tumors mathematically to describe cellular and molecular interactions are emerging as promising tools to simulate the impact of therapy entirely in silico, potentially greatly accelerating delivery of new therapeutics to patients. To facilitate the design of dosing regimens and identification of potential biomarkers for immunotherapy, we developed a new computational model to track tumor progression at the organ scale while capturing the spatial heterogeneity of the tumor in HCC. This computational model of spatial quantitative systems pharmacology was designed to simulate the effects of combination immunotherapy. The model was initiated using literature-derived parameter values and fitted to the specifics of HCC. Model validation was done through comparison with spatial multiomics data from a neoadjuvant HCC clinical trial combining anti-PD1 immunotherapy and a multitargeted tyrosine kinase inhibitor cabozantinib. Validation using spatial proteomics data from imaging mass cytometry demonstrated that closer proximity between CD8 T cells and macrophages correlated with nonresponse. We also compared the model output with Visium spatial transcriptomics profiling of samples from posttreatment tumor resections in the clinical trial and from another independent study of anti-PD1 monotherapy. Spatial transcriptomics data confirmed simulation results, suggesting the importance of spatial patterns of tumor vasculature and TGFβ in tumor and immune cell interactions. Our findings demonstrate that incorporating mathematical modeling and computer simulations with high-throughput spatial multiomics data provides a novel approach for patient outcome prediction and biomarker discovery. Significance: Incorporating mathematical modeling and computer simulations with high-throughput spatial multiomics data provides an effective approach for patient outcome prediction and biomarker discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃饱饱完成签到 ,获得积分10
1秒前
轻舞飞扬完成签到,获得积分10
2秒前
8秒前
陈文学完成签到,获得积分10
11秒前
13秒前
单身的淇完成签到 ,获得积分10
14秒前
ahxb完成签到,获得积分10
15秒前
李健应助张鱼小丸子采纳,获得20
24秒前
13完成签到,获得积分10
33秒前
scott_zip完成签到 ,获得积分10
38秒前
深情的阿宇完成签到,获得积分10
39秒前
活泼的牛青完成签到 ,获得积分10
42秒前
42秒前
42秒前
42秒前
42秒前
42秒前
42秒前
42秒前
42秒前
EMMA发布了新的文献求助10
43秒前
搜集达人应助科研通管家采纳,获得10
43秒前
NexusExplorer应助科研通管家采纳,获得10
43秒前
yyy完成签到 ,获得积分10
43秒前
jueding应助科研通管家采纳,获得10
43秒前
深情安青应助科研通管家采纳,获得10
43秒前
时尚的靖完成签到 ,获得积分10
44秒前
ixueyi发布了新的文献求助10
56秒前
风不尽,树不静完成签到 ,获得积分10
56秒前
56秒前
二分三分完成签到,获得积分10
58秒前
我想当二郎神完成签到,获得积分10
59秒前
花生油炒花生米完成签到 ,获得积分10
1分钟前
wendy完成签到,获得积分10
1分钟前
1分钟前
典雅的夜梦完成签到 ,获得积分10
1分钟前
西海岸的风完成签到 ,获得积分10
1分钟前
热心乞完成签到 ,获得积分10
1分钟前
汉堡包应助azzkmj采纳,获得10
1分钟前
General完成签到 ,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852126
求助须知:如何正确求助?哪些是违规求助? 6276113
关于积分的说明 15627658
捐赠科研通 4968034
什么是DOI,文献DOI怎么找? 2678871
邀请新用户注册赠送积分活动 1623127
关于科研通互助平台的介绍 1579506