Integration of Clinical Trial Spatial Multiomics Analysis and Virtual Clinical Trials Enables Immunotherapy Response Prediction and Biomarker Discovery

临床试验 生物标志物 生物标志物发现 免疫疗法 计算生物学 医学 肿瘤科 癌症 内科学 生物 蛋白质组学 遗传学 基因
作者
Shuming Zhang,Atul Deshpande,Babita K. Verma,Hanwen Wang,Haoyang Mi,Long Yuan,Won Jin Ho,Elizabeth M. Jaffee,Qingfeng Zhu,Robert A. Anders,Mark Yarchoan,Luciane T. Kagohara,Elana J. Fertig,Aleksander S. Popel
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (16): 2734-2748 被引量:7
标识
DOI:10.1158/0008-5472.can-24-0943
摘要

Due to the lack of treatment options, there remains a need to advance new therapeutics in hepatocellular carcinoma (HCC). The traditional approach moves from initial molecular discovery through animal models to human trials to advance novel systemic therapies that improve treatment outcomes for patients with cancer. Computational methods that simulate tumors mathematically to describe cellular and molecular interactions are emerging as promising tools to simulate the impact of therapy entirely in silico, potentially greatly accelerating delivery of new therapeutics to patients. To facilitate the design of dosing regimens and identification of potential biomarkers for immunotherapy, we developed a new computational model to track tumor progression at the organ scale while capturing the spatial heterogeneity of the tumor in HCC. This computational model of spatial quantitative systems pharmacology was designed to simulate the effects of combination immunotherapy. The model was initiated using literature-derived parameter values and fitted to the specifics of HCC. Model validation was done through comparison with spatial multiomics data from a neoadjuvant HCC clinical trial combining anti-PD1 immunotherapy and a multitargeted tyrosine kinase inhibitor cabozantinib. Validation using spatial proteomics data from imaging mass cytometry demonstrated that closer proximity between CD8 T cells and macrophages correlated with nonresponse. We also compared the model output with Visium spatial transcriptomics profiling of samples from posttreatment tumor resections in the clinical trial and from another independent study of anti-PD1 monotherapy. Spatial transcriptomics data confirmed simulation results, suggesting the importance of spatial patterns of tumor vasculature and TGFβ in tumor and immune cell interactions. Our findings demonstrate that incorporating mathematical modeling and computer simulations with high-throughput spatial multiomics data provides a novel approach for patient outcome prediction and biomarker discovery. Significance: Incorporating mathematical modeling and computer simulations with high-throughput spatial multiomics data provides an effective approach for patient outcome prediction and biomarker discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Orange应助何东玲采纳,获得10
1秒前
hqh发布了新的文献求助10
1秒前
2秒前
干净元芹发布了新的文献求助10
2秒前
2秒前
洪汉发布了新的文献求助30
3秒前
喜喜公发布了新的文献求助50
4秒前
科研通AI6.1应助哈哈哈采纳,获得10
5秒前
今后应助大侠刘川枫采纳,获得10
5秒前
花羽发布了新的文献求助10
6秒前
7秒前
tooty发布了新的文献求助10
7秒前
8秒前
何东玲完成签到,获得积分10
9秒前
酷波er应助Freeli采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
Albert完成签到,获得积分10
12秒前
12rcli完成签到,获得积分0
13秒前
hooke完成签到,获得积分10
13秒前
别当真完成签到 ,获得积分10
14秒前
冷傲雪糕完成签到,获得积分10
14秒前
杨耑耑发布了新的文献求助10
15秒前
动听的千雁关注了科研通微信公众号
15秒前
马宁婧完成签到 ,获得积分10
16秒前
wansida完成签到,获得积分10
17秒前
LLHHZZ发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
科研通AI6.1应助hnututu采纳,获得30
22秒前
23秒前
24秒前
牛牛发布了新的文献求助10
25秒前
丸子完成签到,获得积分10
27秒前
27秒前
量子星尘发布了新的文献求助10
29秒前
大模型应助花羽采纳,获得10
29秒前
30秒前
Solkatt发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5820503
求助须知:如何正确求助?哪些是违规求助? 5967298
关于积分的说明 15555116
捐赠科研通 4942274
什么是DOI,文献DOI怎么找? 2661925
邀请新用户注册赠送积分活动 1608173
关于科研通互助平台的介绍 1563089