Research on Bearing Surface Scratch Detection Based on Improved YOLOV5

刮擦 方位(导航) 计算机科学 曲面(拓扑) 支承面 人工智能 卷积神经网络 计算机视觉 机械工程 工程类 操作系统 润滑 几何学 数学
作者
Huakun Jia,Huimin Zhou,Zhehao Chen,Rongke Gao,Yang Lu,Liandong Yu
出处
期刊:Sensors [MDPI AG]
卷期号:24 (10): 3002-3002
标识
DOI:10.3390/s24103002
摘要

Bearings are crucial components of machinery and equipment, and it is essential to inspect them thoroughly to ensure a high pass rate. Currently, bearing scratch detection is primarily carried out manually, which cannot meet industrial demands. This study presents research on the detection of bearing surface scratches. An improved YOLOV5 network, named YOLOV5-CDG, is proposed for detecting bearing surface defects using scratch images as targets. The YOLOV5-CDG model is based on the YOLOV5 network model with the addition of a Coordinate Attention (CA) mechanism module, fusion of Deformable Convolutional Networks (DCNs), and a combination with the GhostNet lightweight network. To achieve bearing surface scratch detection, a machine vision-based bearing surface scratch sensor system is established, and a self-made bearing surface scratch dataset is produced as the basis. The scratch detection final Average Precision (AP) value is 97%, which is 3.4% higher than that of YOLOV5. Additionally, the model has an accuracy of 99.46% for detecting defective and qualified products. The average detection time per image is 263.4 ms on the CPU device and 12.2 ms on the GPU device, demonstrating excellent performance in terms of both speed and accuracy. Furthermore, this study analyzes and compares the detection results of various models, demonstrating that the proposed method satisfies the requirements for detecting scratches on bearing surfaces in industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haku完成签到,获得积分10
1秒前
可爱的函函应助laodie采纳,获得10
3秒前
Singularity应助忆楠采纳,获得10
4秒前
5秒前
请叫我风吹麦浪应助PengHu采纳,获得30
6秒前
jjjjjj完成签到,获得积分10
6秒前
凝子老师发布了新的文献求助10
8秒前
8秒前
橙子fy16_发布了新的文献求助10
10秒前
cookie完成签到,获得积分10
10秒前
柒柒的小熊完成签到,获得积分10
11秒前
11秒前
Hello应助萌之痴痴采纳,获得10
12秒前
hahaer完成签到,获得积分10
14秒前
领导范儿应助失眠虔纹采纳,获得10
15秒前
16秒前
Owen应助凝子老师采纳,获得10
19秒前
19秒前
南宫炽滔完成签到 ,获得积分10
21秒前
21秒前
丘比特应助飞羽采纳,获得10
22秒前
沙拉发布了新的文献求助10
22秒前
23秒前
24秒前
椰子糖完成签到 ,获得积分10
25秒前
25秒前
ZHU完成签到,获得积分10
26秒前
阳阳发布了新的文献求助10
27秒前
Raymond应助雪山飞龙采纳,获得10
27秒前
kk发布了新的文献求助10
28秒前
28秒前
29秒前
29秒前
29秒前
30秒前
33秒前
果果瑞宁发布了新的文献求助10
33秒前
wewewew发布了新的文献求助10
33秒前
33秒前
打打应助沙拉采纳,获得10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849