Research on Bearing Surface Scratch Detection Based on Improved YOLOV5

刮擦 方位(导航) 计算机科学 曲面(拓扑) 支承面 人工智能 卷积神经网络 计算机视觉 机械工程 工程类 操作系统 润滑 几何学 数学
作者
Huakun Jia,Huimin Zhou,Zhehao Chen,Rongke Gao,Yang Lu,Liandong Yu
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (10): 3002-3002
标识
DOI:10.3390/s24103002
摘要

Bearings are crucial components of machinery and equipment, and it is essential to inspect them thoroughly to ensure a high pass rate. Currently, bearing scratch detection is primarily carried out manually, which cannot meet industrial demands. This study presents research on the detection of bearing surface scratches. An improved YOLOV5 network, named YOLOV5-CDG, is proposed for detecting bearing surface defects using scratch images as targets. The YOLOV5-CDG model is based on the YOLOV5 network model with the addition of a Coordinate Attention (CA) mechanism module, fusion of Deformable Convolutional Networks (DCNs), and a combination with the GhostNet lightweight network. To achieve bearing surface scratch detection, a machine vision-based bearing surface scratch sensor system is established, and a self-made bearing surface scratch dataset is produced as the basis. The scratch detection final Average Precision (AP) value is 97%, which is 3.4% higher than that of YOLOV5. Additionally, the model has an accuracy of 99.46% for detecting defective and qualified products. The average detection time per image is 263.4 ms on the CPU device and 12.2 ms on the GPU device, demonstrating excellent performance in terms of both speed and accuracy. Furthermore, this study analyzes and compares the detection results of various models, demonstrating that the proposed method satisfies the requirements for detecting scratches on bearing surfaces in industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助氟锑酸采纳,获得10
刚刚
xuelanghu完成签到,获得积分10
1秒前
1秒前
1秒前
李健应助hao采纳,获得10
1秒前
聪慧若风完成签到,获得积分10
2秒前
2秒前
hulahula发布了新的文献求助10
2秒前
刘肖完成签到,获得积分10
2秒前
llly发布了新的文献求助10
2秒前
11哥发布了新的文献求助10
3秒前
钱若祺完成签到,获得积分10
3秒前
5秒前
zzj完成签到,获得积分10
6秒前
6秒前
无情书白应助Pyc采纳,获得50
6秒前
7秒前
ccm发布了新的文献求助10
8秒前
8秒前
liuchang发布了新的文献求助10
9秒前
9秒前
长孙一手完成签到 ,获得积分10
10秒前
小蘑菇应助hulahula采纳,获得10
12秒前
zhaoyanan发布了新的文献求助10
12秒前
冰墩墩发布了新的文献求助30
12秒前
12秒前
12秒前
氟锑酸发布了新的文献求助10
13秒前
调皮煎蛋完成签到,获得积分10
14秒前
14秒前
陈HIAHIA完成签到,获得积分10
14秒前
XXF完成签到,获得积分10
14秒前
15秒前
清梦完成签到,获得积分10
17秒前
17秒前
18秒前
科yan完成签到,获得积分10
18秒前
18秒前
Ava应助画风湖湘卷采纳,获得10
19秒前
19秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5241249
求助须知:如何正确求助?哪些是违规求助? 4408034
关于积分的说明 13720910
捐赠科研通 4277007
什么是DOI,文献DOI怎么找? 2346903
邀请新用户注册赠送积分活动 1344015
关于科研通互助平台的介绍 1302114