Unmixing-based forest recovery indicators for predicting long-term recovery success

遥感 期限(时间) 环境科学 计算机科学 地质学 物理 量子力学
作者
Lisa Mandl,Alba Viana-Soto,Rupert Seidl,Ana Stritih,Cornelius Senf
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:308: 114194-114194
标识
DOI:10.1016/j.rse.2024.114194
摘要

Recovery from forest disturbances is a pivotal metric of forest resilience. Forests globally are facing unprecedented levels of both natural and anthropogenic disturbances, yet our understanding of their recovery from these disturbances remains incomplete. Remote sensing is an effective tool for understanding post-disturbance recovery, but existing approaches largely rely on spectral recovery indicators that are difficult to interpret and require long time series after disturbance, which limits their applicability to recent disturbance pulses. We here introduce a novel, ecologically informed set of recovery indicators based on fractional cover maps derived from spectral unmixing analysis of Landsat and Sentinel-2 time series. We estimated annual pre- and post-disturbance tree cover and bare ground fractions over the eastern Alps (∼130,000 km2) for the period from 1990 to 2021. From these fraction time series, we derived recovery intervals defined as the time it takes to reach a pre-defined tree cover threshold after disturbance, referred to as canopy recovery. We found mean recovery intervals between 5.5 and 13.4 years, depending on recovery threshold and disturbance severity. Comparing our results to traditional remote sensing-based approaches of mapping forest recovery, we found that spectral unmixing-based recovery indicators give considerably more realistic recovery intervals than approaches based on spectral indices because they effectively distinguish tree regeneration from other post-disturbance vegetation (e.g., shrubs, grasses). Finally, we were able to accurately predict the long-term forest recovery success based on the information available only three years after disturbance, which underlines the high importance of a short window of reorganization post-disturbance, and highlights the utility of remote sensing to inform post-disturbance forest management (e.g., in identifying areas in need of tree planting). Our study thus provides an important step ahead in the remote sensing-based monitoring of forest recovery and resilience, which is urgently needed in a time of rapid forest change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默孤容发布了新的文献求助10
1秒前
Owen应助畅快的明杰采纳,获得10
1秒前
善学以致用应助@-@采纳,获得30
3秒前
eli完成签到,获得积分10
5秒前
5秒前
汽水完成签到 ,获得积分10
8秒前
俊逸亦云发布了新的文献求助10
10秒前
11秒前
11秒前
SciGPT应助自觉冷松采纳,获得10
12秒前
赘婿应助风中泰坦采纳,获得10
12秒前
xiaohaonumber2完成签到 ,获得积分10
15秒前
Alan完成签到 ,获得积分10
16秒前
16秒前
17秒前
读文献啦发布了新的文献求助10
18秒前
成就的书包完成签到,获得积分10
18秒前
relexer发布了新的文献求助10
19秒前
qq完成签到 ,获得积分10
19秒前
DullElm完成签到 ,获得积分10
20秒前
车念波发布了新的文献求助10
21秒前
huge0114完成签到,获得积分10
22秒前
刘某人完成签到 ,获得积分10
22秒前
22秒前
22秒前
小蘑菇应助喔喔采纳,获得30
23秒前
25秒前
23完成签到,获得积分10
25秒前
26秒前
小白完成签到,获得积分10
26秒前
自觉冷松发布了新的文献求助10
26秒前
大个应助聪明念真采纳,获得10
29秒前
29秒前
@-@发布了新的文献求助30
30秒前
32秒前
我是老大应助读文献啦采纳,获得10
32秒前
cheems完成签到 ,获得积分10
32秒前
小猫多鱼完成签到,获得积分10
33秒前
我是老大应助小巧的诗双采纳,获得10
33秒前
34完成签到 ,获得积分10
33秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集 大事记1949-1987 2000
Sustainability in ’Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
草地生态学 880
Threaded Harmony: A Sustainable Approach to Fashion 799
中国有机(类)肥料 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3060283
求助须知:如何正确求助?哪些是违规求助? 2715805
关于积分的说明 7446827
捐赠科研通 2361491
什么是DOI,文献DOI怎么找? 1251506
科研通“疑难数据库(出版商)”最低求助积分说明 607767
版权声明 596475