亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unmixing-based forest recovery indicators for predicting long-term recovery success

遥感 期限(时间) 环境科学 计算机科学 地质学 物理 量子力学
作者
Lisa Mandl,Alba Viana-Soto,Rupert Seidl,Ana Stritih,Cornelius Senf
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:308: 114194-114194
标识
DOI:10.1016/j.rse.2024.114194
摘要

Recovery from forest disturbances is a pivotal metric of forest resilience. Forests globally are facing unprecedented levels of both natural and anthropogenic disturbances, yet our understanding of their recovery from these disturbances remains incomplete. Remote sensing is an effective tool for understanding post-disturbance recovery, but existing approaches largely rely on spectral recovery indicators that are difficult to interpret and require long time series after disturbance, which limits their applicability to recent disturbance pulses. We here introduce a novel, ecologically informed set of recovery indicators based on fractional cover maps derived from spectral unmixing analysis of Landsat and Sentinel-2 time series. We estimated annual pre- and post-disturbance tree cover and bare ground fractions over the eastern Alps (∼130,000 km2) for the period from 1990 to 2021. From these fraction time series, we derived recovery intervals defined as the time it takes to reach a pre-defined tree cover threshold after disturbance, referred to as canopy recovery. We found mean recovery intervals between 5.5 and 13.4 years, depending on recovery threshold and disturbance severity. Comparing our results to traditional remote sensing-based approaches of mapping forest recovery, we found that spectral unmixing-based recovery indicators give considerably more realistic recovery intervals than approaches based on spectral indices because they effectively distinguish tree regeneration from other post-disturbance vegetation (e.g., shrubs, grasses). Finally, we were able to accurately predict the long-term forest recovery success based on the information available only three years after disturbance, which underlines the high importance of a short window of reorganization post-disturbance, and highlights the utility of remote sensing to inform post-disturbance forest management (e.g., in identifying areas in need of tree planting). Our study thus provides an important step ahead in the remote sensing-based monitoring of forest recovery and resilience, which is urgently needed in a time of rapid forest change.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏子愈完成签到 ,获得积分10
13秒前
动听衬衫完成签到 ,获得积分10
15秒前
动听衬衫完成签到 ,获得积分10
15秒前
动听衬衫完成签到 ,获得积分10
15秒前
16秒前
沉香续断发布了新的文献求助10
22秒前
32秒前
隐形曼青应助结实青丝采纳,获得10
39秒前
孤独蘑菇完成签到 ,获得积分10
42秒前
1分钟前
2分钟前
王骧完成签到,获得积分10
2分钟前
美满信封完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI6.2应助王骧采纳,获得10
2分钟前
2分钟前
2分钟前
606发布了新的文献求助10
2分钟前
淮安石河子完成签到 ,获得积分10
2分钟前
2分钟前
威武采白完成签到 ,获得积分10
3分钟前
火山蜗牛完成签到,获得积分10
3分钟前
情怀应助科研通管家采纳,获得10
3分钟前
情怀应助科研通管家采纳,获得10
3分钟前
马上顺利完成签到,获得积分10
4分钟前
4分钟前
结实青丝发布了新的文献求助10
4分钟前
4分钟前
xl_c完成签到 ,获得积分10
4分钟前
Luke2完成签到 ,获得积分10
4分钟前
香蕉觅云应助柯慕玉泽采纳,获得10
5分钟前
5分钟前
脑洞疼应助只道寻常采纳,获得10
5分钟前
陶醉的烤鸡完成签到 ,获得积分10
5分钟前
5分钟前
木有完成签到 ,获得积分10
5分钟前
5分钟前
柯慕玉泽发布了新的文献求助10
5分钟前
h0jian09完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870815
求助须知:如何正确求助?哪些是违规求助? 6468169
关于积分的说明 15665055
捐赠科研通 4987063
什么是DOI,文献DOI怎么找? 2689150
邀请新用户注册赠送积分活动 1631491
关于科研通互助平台的介绍 1589535