Unmixing-based forest recovery indicators for predicting long-term recovery success

遥感 期限(时间) 环境科学 计算机科学 地质学 量子力学 物理
作者
Lisa Mandl,Alba Viana-Soto,Rupert Seidl,Ana Stritih,Cornelius Senf
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:308: 114194-114194
标识
DOI:10.1016/j.rse.2024.114194
摘要

Recovery from forest disturbances is a pivotal metric of forest resilience. Forests globally are facing unprecedented levels of both natural and anthropogenic disturbances, yet our understanding of their recovery from these disturbances remains incomplete. Remote sensing is an effective tool for understanding post-disturbance recovery, but existing approaches largely rely on spectral recovery indicators that are difficult to interpret and require long time series after disturbance, which limits their applicability to recent disturbance pulses. We here introduce a novel, ecologically informed set of recovery indicators based on fractional cover maps derived from spectral unmixing analysis of Landsat and Sentinel-2 time series. We estimated annual pre- and post-disturbance tree cover and bare ground fractions over the eastern Alps (∼130,000 km2) for the period from 1990 to 2021. From these fraction time series, we derived recovery intervals defined as the time it takes to reach a pre-defined tree cover threshold after disturbance, referred to as canopy recovery. We found mean recovery intervals between 5.5 and 13.4 years, depending on recovery threshold and disturbance severity. Comparing our results to traditional remote sensing-based approaches of mapping forest recovery, we found that spectral unmixing-based recovery indicators give considerably more realistic recovery intervals than approaches based on spectral indices because they effectively distinguish tree regeneration from other post-disturbance vegetation (e.g., shrubs, grasses). Finally, we were able to accurately predict the long-term forest recovery success based on the information available only three years after disturbance, which underlines the high importance of a short window of reorganization post-disturbance, and highlights the utility of remote sensing to inform post-disturbance forest management (e.g., in identifying areas in need of tree planting). Our study thus provides an important step ahead in the remote sensing-based monitoring of forest recovery and resilience, which is urgently needed in a time of rapid forest change.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xo80完成签到 ,获得积分10
刚刚
刚刚
mu发布了新的文献求助10
刚刚
赘婿应助学术裁缝采纳,获得10
3秒前
3秒前
3秒前
4秒前
5秒前
5秒前
香香香发布了新的文献求助10
5秒前
武林小鸟完成签到,获得积分10
6秒前
Owen应助蛋卷采纳,获得10
6秒前
祝顺遂发布了新的文献求助10
7秒前
7秒前
0701完成签到 ,获得积分10
7秒前
许许完成签到,获得积分10
8秒前
Ternura完成签到,获得积分20
8秒前
8秒前
一叶扁舟完成签到 ,获得积分10
8秒前
xx发布了新的文献求助10
9秒前
岁月如酒完成签到,获得积分10
10秒前
啊擦删除发布了新的文献求助10
10秒前
孙煜发布了新的文献求助30
10秒前
11秒前
cc完成签到,获得积分10
11秒前
tlotw41发布了新的文献求助10
11秒前
打打应助Qinghen采纳,获得10
11秒前
12秒前
胡树发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
阿啊完成签到,获得积分20
15秒前
15秒前
17秒前
19秒前
刘刘完成签到,获得积分10
19秒前
小艾冂学发布了新的文献求助80
19秒前
伶俐盼海发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497