Performance investigation of epilepsy detection from noisy EEG signals using base-2-meta stacking classifier

癫痫 脑电图 计算机科学 线性判别分析 模式识别(心理学) 人工智能 判别式 分类器(UML) 噪音(视频) 特征提取 语音识别 心理学 神经科学 图像(数学)
作者
Torikul Islam,Redwanul Islam,Monisha Basak,Amit Dutta Roy,Md Adil Arman,Samanta Paul,Oleksii Shandra,Sk. Rahat Ali
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-61338-2
摘要

Abstract Epilepsy is a chronic neurological disease, characterized by spontaneous, unprovoked, recurrent seizures that may lead to long-term disability and premature death. Despite significant efforts made to improve epilepsy detection clinically and pre-clinically, the pervasive presence of noise in EEG signals continues to pose substantial challenges to their effective application. In addition, discriminant features for epilepsy detection have not been investigated yet. The objective of this study is to develop a hybrid model for epilepsy detection from noisy and fragmented EEG signals. We hypothesized that a hybrid model could surpass existing single models in epilepsy detection. Our approach involves manual noise rejection and a novel statistical channel selection technique to detect epilepsy even from noisy EEG signals. Our proposed Base-2-Meta stacking classifier achieved notable accuracy (0.98 ± 0.05), precision (0.98 ± 0.07), recall (0.98 ± 0.05), and F1 score (0.98 ± 0.04) even with noisy 5-s segmented EEG signals. Application of our approach to the specific problem like detection of epilepsy from noisy and fragmented EEG data reveals a performance that is not only superior to others, but also is translationally relevant, highlighting its potential application in a clinic setting, where EEG signals are often noisy or scanty. Our proposed metric DF-A (Discriminant feature-accuracy), for the first time, identified the most discriminant feature with models that give A accuracy or above (A = 95 used in this study). This groundbreaking approach allows for detecting discriminant features and can be used as potential electrographic biomarkers in epilepsy detection research. Moreover, our study introduces innovative insights into the understanding of these features, epilepsy detection, and cross-validation, markedly improving epilepsy detection in ways previously unavailable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐观啤酒应助星空采纳,获得10
3秒前
wbh完成签到,获得积分10
4秒前
小黄发布了新的文献求助10
4秒前
Vi完成签到,获得积分20
7秒前
CipherSage应助iiiiii采纳,获得10
7秒前
nuoyefenfei应助yiyi采纳,获得30
11秒前
大模型应助jjffyy采纳,获得10
12秒前
13秒前
阿千完成签到 ,获得积分10
17秒前
17秒前
19秒前
19秒前
20秒前
斯文败类应助Hayat采纳,获得10
20秒前
谷谷发布了新的文献求助10
20秒前
紫麒麟完成签到,获得积分10
21秒前
Ava应助LL采纳,获得10
21秒前
21秒前
CodeCraft应助稞小弟采纳,获得10
21秒前
季望完成签到,获得积分20
21秒前
小哲发布了新的文献求助10
23秒前
likey完成签到,获得积分10
24秒前
24秒前
季望发布了新的文献求助10
24秒前
26秒前
兴奋采梦发布了新的文献求助10
27秒前
谷谷完成签到,获得积分10
27秒前
小哲完成签到,获得积分10
29秒前
清新的碧曼完成签到 ,获得积分10
30秒前
无花果应助谷谷采纳,获得10
31秒前
夏日香气发布了新的文献求助10
31秒前
科目三应助Aurora采纳,获得10
35秒前
华仔应助繁荣的小笼包采纳,获得10
39秒前
百里青寒完成签到,获得积分10
40秒前
eagle发布了新的文献求助10
44秒前
45秒前
46秒前
无无完成签到,获得积分10
46秒前
47秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901