First-principles-based machine learning interatomic potential for molecular dynamics simulations of 2D lateral MoS2/WS2 heterostructures

分子动力学 原子间势 异质结 动力学(音乐) 计算机科学 材料科学 统计物理学 物理 化学 计算化学 光电子学 声学
作者
Xiangjun Liu,B. Wang,K. Jia,Wang Quan-jie,D H Wang,Yucheng Xiong
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:135 (20) 被引量:1
标识
DOI:10.1063/5.0201527
摘要

Understanding the mechanical and thermodynamic properties of transition-metal dichalcogenides (TMDs) and their heterostructures is pivotal for advancing the development of flexible semiconductor devices, and molecular dynamics (MD) simulation is widely applied to study these properties. However, current uncertainties persist regarding the efficacy of empirical potentials in MD simulations to accurately describe the intricate performance of complex interfaces within heterostructures. This study addresses these challenges by developing an interatomic potential based on deep neural networks and first-principles calculations. Specifically focusing on MoS2/WS2 heterostructures, our approach aims to predict Young's modulus and thermal conductivities. The potential's effectiveness is demonstrated through the validation of structural features, mechanical properties, and thermodynamic characteristics, revealing close alignment with values derived from first-principles calculations. A noteworthy finding is the substantial influence of the load direction on Young's modulus of heterostructures. Furthermore, our results highlight that the interfacial thermal conductance of the MoS2/WS2 heterostructures is considerably larger than that of graphene-based interfaces. The potential developed in this work facilitates large-scale material simulations, bridging the gap with first-principles calculations. Notably, it outperforms empirical potentials under interface conditions, establishing its significant competitiveness in simulation computations. Our approach not only contributes to a deeper understanding of TMDs and heterostructures but also presents a robust tool for the simulation of their mechanical and thermal behaviors, paving the way for advancements in flexible semiconductor device manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明月完成签到,获得积分10
刚刚
8023发布了新的文献求助10
1秒前
emm发布了新的文献求助10
1秒前
萝卜应助哎呦喂采纳,获得100
2秒前
2秒前
minet完成签到,获得积分10
2秒前
贺兴潇发布了新的文献求助50
2秒前
派大星应助灬卍冉采纳,获得10
3秒前
小羊不想坐牢完成签到,获得积分10
3秒前
CodeCraft应助冷艳的采纳,获得10
4秒前
4秒前
qian发布了新的文献求助10
5秒前
萝卜应助苏楠采纳,获得10
5秒前
6秒前
Grace完成签到,获得积分10
6秒前
m弟完成签到 ,获得积分10
6秒前
6秒前
苹果元正发布了新的文献求助30
7秒前
fengqing完成签到,获得积分10
7秒前
7秒前
9秒前
西西发布了新的文献求助10
9秒前
9秒前
EthanYan应助糟糕的铁锤采纳,获得50
10秒前
Zn发布了新的文献求助10
10秒前
可爱的函函应助奶酪芝士采纳,获得10
10秒前
huhu发布了新的文献求助10
11秒前
11秒前
麦子哥发布了新的文献求助10
12秒前
emm完成签到,获得积分10
13秒前
elfff完成签到,获得积分10
13秒前
云宝发布了新的文献求助10
13秒前
13秒前
李文惠发布了新的文献求助10
14秒前
华仔应助andy采纳,获得30
15秒前
Pepsi完成签到,获得积分10
16秒前
您不疼发布了新的文献求助10
16秒前
隐形曼青应助复杂荧采纳,获得10
16秒前
快来跑步发布了新的文献求助10
16秒前
josephuala完成签到,获得积分10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454862
求助须知:如何正确求助?哪些是违规求助? 3050097
关于积分的说明 9020280
捐赠科研通 2738771
什么是DOI,文献DOI怎么找? 1502291
科研通“疑难数据库(出版商)”最低求助积分说明 694453
邀请新用户注册赠送积分活动 693159