Integrated information decomposition unveils major structural traits of in silico and in vitro neuronal networks

传递熵 计算机科学 信息传递 网络拓扑 拓扑(电路) 冗余(工程) 信息流 熵(时间箭头) 信息论 交互信息 网络动力学 理论计算机科学 分布式计算 人工智能 数学 最大熵原理 计算机网络 物理 电信 语言学 哲学 统计 离散数学 组合数学 量子力学 操作系统
作者
Gustavo Menesse,Akke Mats Houben,Jordi Soriano,Joaquı́n J. Torres
出处
期刊:Chaos [American Institute of Physics]
卷期号:34 (5) 被引量:1
标识
DOI:10.1063/5.0201454
摘要

The properties of complex networked systems arise from the interplay between the dynamics of their elements and the underlying topology. Thus, to understand their behavior, it is crucial to convene as much information as possible about their topological organization. However, in large systems, such as neuronal networks, the reconstruction of such topology is usually carried out from the information encoded in the dynamics on the network, such as spike train time series, and by measuring the transfer entropy between system elements. The topological information recovered by these methods does not necessarily capture the connectivity layout, but rather the causal flow of information between elements. New theoretical frameworks, such as Integrated Information Decomposition (Φ-ID), allow one to explore the modes in which information can flow between parts of a system, opening a rich landscape of interactions between network topology, dynamics, and information. Here, we apply Φ-ID on in silico and in vitro data to decompose the usual transfer entropy measure into different modes of information transfer, namely, synergistic, redundant, or unique. We demonstrate that the unique information transfer is the most relevant measure to uncover structural topological details from network activity data, while redundant information only introduces residual information for this application. Although the retrieved network connectivity is still functional, it captures more details of the underlying structural topology by avoiding to take into account emergent high-order interactions and information redundancy between elements, which are important for the functional behavior, but mask the detection of direct simple interactions between elements constituted by the structural network topology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助ohh采纳,获得10
刚刚
yang完成签到,获得积分10
1秒前
wanci应助Yangaaa采纳,获得10
1秒前
宋宋发布了新的文献求助10
1秒前
George完成签到,获得积分10
1秒前
丘比特应助坚强的霆采纳,获得10
2秒前
Dreamsli完成签到,获得积分10
2秒前
2秒前
3秒前
科研通AI5应助youjiwuji采纳,获得50
3秒前
汉堡包应助niekyang采纳,获得10
3秒前
feng完成签到,获得积分10
3秒前
洋洋完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
彳亍1117应助小韩采纳,获得10
4秒前
唠叨的白萱完成签到,获得积分10
4秒前
静子研二发论文完成签到 ,获得积分20
5秒前
谷粱紫槐发布了新的文献求助10
5秒前
6秒前
6秒前
清爽的梦秋完成签到,获得积分10
7秒前
卓卓关注了科研通微信公众号
7秒前
彪壮的青雪完成签到,获得积分10
7秒前
Ave_Mujica发布了新的文献求助10
8秒前
宋十一发布了新的文献求助10
8秒前
HHH发布了新的文献求助10
8秒前
nano完成签到 ,获得积分10
9秒前
浊酒发布了新的文献求助10
9秒前
tang发布了新的文献求助30
10秒前
Steven发布了新的文献求助10
10秒前
杨某发布了新的文献求助10
10秒前
33发布了新的文献求助50
10秒前
10秒前
11秒前
12秒前
李健应助类囊体薄膜采纳,获得10
12秒前
12秒前
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729900
求助须知:如何正确求助?哪些是违规求助? 3274756
关于积分的说明 9988621
捐赠科研通 2990154
什么是DOI,文献DOI怎么找? 1640914
邀请新用户注册赠送积分活动 779488
科研通“疑难数据库(出版商)”最低求助积分说明 748235