A Self-Supervised Learning Framework for Multi-Tasks Seismic Processing Via Meta-Learning

计算机科学 元学习(计算机科学) 人工智能 任务(项目管理) 工程类 系统工程
作者
Susan Cheng,Randy Harsuko,Tariq Alkhalifah
标识
DOI:10.3997/2214-4609.202410338
摘要

Summary Despite the typical commonalities and consistent features found in seismic data, neural networks are frequently trained for singular, specific tasks. Leveraging the acquired features and representations across multiple tasks can reduce the training cost and enhance the network's resilience. Meta learning offers the opportunity for a network to adapt to many tasks efficiently; however, a notable drawback lies in its dependency on labeled data for supervised training, which hinders its application to real data. To address this issue, we employ a self-supervised meta learning paradigm that allows direct training on label-less real data for many seismic processing tasks. In this framework, both the meta-training and meta-testing phases utilize a consistent self-supervised learning (SSL) strategy, namely iterative data refinement. Specifically, the pseudo-labels for the current epoch are derived from the predictions of the network trained in the previous epoch using the original data, while the input data are constructed by processing these predicted pseudo-labels, depending on the specific seismic processing task at hand. Numerical examples demonstrate the effectiveness of the proposed framework in improving quality and reducing cost across various seismic processing tasks under an SSL paradigm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Brunfelsia发布了新的文献求助10
1秒前
奋斗砖家发布了新的文献求助10
1秒前
外向凡松发布了新的文献求助10
3秒前
4秒前
桐桐应助庞伟泽采纳,获得10
4秒前
JamesPei应助zjx5591采纳,获得10
5秒前
Hello应助长歌采纳,获得10
6秒前
yang发布了新的文献求助10
7秒前
脑洞疼应助LEOJAY采纳,获得10
7秒前
壮观的海豚完成签到 ,获得积分10
7秒前
昏睡的咖啡完成签到,获得积分10
7秒前
10秒前
candy发布了新的文献求助20
11秒前
汉堡包应助奋斗砖家采纳,获得10
13秒前
小白发布了新的文献求助10
14秒前
15秒前
庞伟泽发布了新的文献求助10
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
小二郎应助ddjjhh采纳,获得10
18秒前
19秒前
liu发布了新的文献求助10
19秒前
safari发布了新的文献求助10
19秒前
21秒前
Lucas应助203采纳,获得10
21秒前
糟糕的语芹完成签到 ,获得积分10
22秒前
小二郎应助Mr.Su采纳,获得10
22秒前
ttttt发布了新的文献求助10
22秒前
23秒前
LEOJAY完成签到,获得积分20
23秒前
小大夫完成签到 ,获得积分10
23秒前
24秒前
25秒前
25秒前
桐桐应助YJ采纳,获得10
26秒前
27秒前
zjx5591发布了新的文献求助10
27秒前
祖寻菡发布了新的文献求助10
27秒前
28秒前
科研通AI6应助失眠自行车采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5051214
求助须知:如何正确求助?哪些是违规求助? 4278658
关于积分的说明 13337209
捐赠科研通 4093835
什么是DOI,文献DOI怎么找? 2240552
邀请新用户注册赠送积分活动 1247109
关于科研通互助平台的介绍 1176197