玻璃化转变
材料科学
拉伤
粘弹性
结晶
无定形固体
破损
复合材料
热力学
聚合物
化学
结晶学
医学
内科学
物理
作者
Andrew Strongrich,I.W. Flynn,Bakul Bhatnagar,Evgenyi Shalaev,Serguei Tchessalov
标识
DOI:10.1016/j.xphs.2024.05.029
摘要
The purpose of this study was to investigate the mechanical stresses and strains acting on pharmaceutical glass tubing vials during freezing and thawing of model pharmaceutical formulations. Strain measurements were conducted inside of a laboratory-scale freeze-dryer using a custom wireless sensor. In both sucrose and trehalose formulations at concentrations between 5 % and 20 % w/v, the strain measurements initially increased before peaking in magnitude at temperatures close to the respective glass transition temperatures of the maximally freeze concentrated solutes, Tg'. We attribute this behavior to a shift in the mechanical properties of the frozen system from a purely elastic glass below Tg' to a viscoelastic rubber-like material above Tg'. That is, when the interstitial region becomes mechanically compliant at temperature above Tg'. The outputs were less predictable below 5 % w/v and tended to exhibit two separate peaks in strain output, one near the equilibrium melting temperature of pure ice and the other near Tg'. The peaks merged at concentrations between 4 and 5 % w/v where the largest strain magnitude was observed. The strain on primary packaging has traditionally been applied to evaluate the risk of damage or breakage due to, for example, crystallization of excipients. However, data collected during this study suggest there may be utility in formulation design or as a process analytical technology to minimize potentially destabilizing stresses and strains in the frozen formulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI