Mechanical Characterization of Vial Strain During Freezing and Thawing Operations Using Amorphous Excipients

玻璃化转变 材料科学 拉伤 粘弹性 结晶 无定形固体 破损 复合材料 热力学 聚合物 化学 结晶学 医学 内科学 物理
作者
Andrew Strongrich,I.W. Flynn,Bakul Bhatnagar,Evgenyi Shalaev,Serguei Tchessalov
出处
期刊:Journal of Pharmaceutical Sciences [Elsevier]
卷期号:113 (9): 2699-2707
标识
DOI:10.1016/j.xphs.2024.05.029
摘要

The purpose of this study was to investigate the mechanical stresses and strains acting on pharmaceutical glass tubing vials during freezing and thawing of model pharmaceutical formulations. Strain measurements were conducted inside of a laboratory-scale freeze-dryer using a custom wireless sensor. In both sucrose and trehalose formulations at concentrations between 5 % and 20 % w/v, the strain measurements initially increased before peaking in magnitude at temperatures close to the respective glass transition temperatures of the maximally freeze concentrated solutes, Tg'. We attribute this behavior to a shift in the mechanical properties of the frozen system from a purely elastic glass below Tg' to a viscoelastic rubber-like material above Tg'. That is, when the interstitial region becomes mechanically compliant at temperature above Tg'. The outputs were less predictable below 5 % w/v and tended to exhibit two separate peaks in strain output, one near the equilibrium melting temperature of pure ice and the other near Tg'. The peaks merged at concentrations between 4 and 5 % w/v where the largest strain magnitude was observed. The strain on primary packaging has traditionally been applied to evaluate the risk of damage or breakage due to, for example, crystallization of excipients. However, data collected during this study suggest there may be utility in formulation design or as a process analytical technology to minimize potentially destabilizing stresses and strains in the frozen formulation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andone完成签到,获得积分10
刚刚
刚刚
刚刚
LH完成签到,获得积分10
1秒前
1秒前
无私的朝雪完成签到,获得积分10
1秒前
Ava应助正直听芹采纳,获得10
1秒前
txy关注了科研通微信公众号
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
33完成签到,获得积分10
4秒前
NCS完成签到,获得积分10
4秒前
乐乐应助香橙采纳,获得10
4秒前
狄拉克乐园完成签到,获得积分10
5秒前
爆米花应助renkemaomao采纳,获得10
5秒前
完美世界应助Max采纳,获得10
5秒前
Cyrus完成签到,获得积分10
5秒前
5秒前
充电宝应助楚天正阔采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
老迟到的友菱完成签到,获得积分10
6秒前
7秒前
NexusExplorer应助小天才采纳,获得10
8秒前
strawberry发布了新的文献求助10
8秒前
8秒前
斯文败类应助DYZ采纳,获得10
8秒前
11发布了新的文献求助30
9秒前
肯德大厨完成签到 ,获得积分10
9秒前
jojo完成签到 ,获得积分10
9秒前
9秒前
10秒前
Owen应助lixxx采纳,获得10
10秒前
高山流水应助Makta采纳,获得10
10秒前
快乐的一只小跳蛙完成签到,获得积分10
10秒前
爆米花应助XNNI采纳,获得30
11秒前
12秒前
哆啦A梦完成签到 ,获得积分10
12秒前
xxy发布了新的文献求助10
12秒前
大模型应助zxy采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653573
求助须知:如何正确求助?哪些是违规求助? 4790162
关于积分的说明 15064753
捐赠科研通 4812180
什么是DOI,文献DOI怎么找? 2574341
邀请新用户注册赠送积分活动 1529955
关于科研通互助平台的介绍 1488680