Multiaxial creep–fatigue failure mechanism and life prediction of a turbine blade based on a unified numerical solution approach

蠕动 涡轮叶片 刀(考古) 结构工程 材料科学 失效机理 机制(生物学) 疲劳试验 涡轮机 工程类 机械工程 复合材料 物理 量子力学
作者
X.C. Zhang,Le Xu,Run‐Zi Wang,Tiwen Lu,Lei He,Takamoto Itoh,Xian‐Cheng Zhang
出处
期刊:Fatigue & Fracture of Engineering Materials & Structures [Wiley]
卷期号:47 (8): 3015-3031
标识
DOI:10.1111/ffe.14360
摘要

Abstract Exposure of turbine blades to cyclic torsional loading at high temperature, stemming from pre‐torque installation and the aerodynamic forces during operation, has the potential to induce substantial creep–fatigue damage, thereby contributing to the likelihood of premature failure. Investigating the deformation mechanisms and proposing a reliable life prediction method aiming at torsional loading is critical to ensure the structural integrity of turbine blades. This study conducted strain‐controlled fatigue and creep–fatigue tests on Inconel 718 superalloy, employing a multiaxial servo‐hydraulic testing machine. Electron backscattering diffraction elucidated deformation and damage mechanisms, forming a basis for subsequent constitutive modeling and life prediction. The lack of creep–fatigue mechanical behavior and microscopic failure mechanism when stress triaxiality equal to 0 is filled, which provides the theoretical basis and data support for the life design and damage assessment of this material under extreme service conditions. The unified viscoplasticity constitutive model effectively characterized macroscopic deformation under torsional loading. Prediction of creep–fatigue life under torsional loading, utilizing the multiaxial ductility factor‐modified strain energy density exhaustion model, demonstrated excellent alignment with experimental findings. Finally, parametric analyses of stress distribution and damage assessment under different conditions were carried out for the example of a turbine blade with relatively rarely considered aerodynamic loading as a variable. It is expected to be popularized and applied in life design and damage assessment of high‐temperature structures under multiaxial loading in engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddd133完成签到,获得积分20
刚刚
落后的天蓝完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
李爱国应助达古冰川采纳,获得10
3秒前
浮生发布了新的文献求助10
3秒前
飞飞发布了新的文献求助10
3秒前
lxaz完成签到,获得积分10
4秒前
4秒前
科研通AI5应助体贴花卷采纳,获得10
4秒前
关我屁事发布了新的文献求助10
5秒前
风中子轩发布了新的文献求助10
6秒前
水三寿完成签到,获得积分20
8秒前
8秒前
ddd133发布了新的文献求助50
8秒前
yan1e发布了新的文献求助10
9秒前
9秒前
10秒前
花开富贵完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
墨墨完成签到,获得积分20
12秒前
13秒前
意志所向发布了新的文献求助10
14秒前
宋晓蓝完成签到,获得积分10
15秒前
浮生发布了新的文献求助10
17秒前
花开富贵发布了新的文献求助10
18秒前
19秒前
失眠的仙人掌完成签到,获得积分10
20秒前
slk完成签到 ,获得积分10
21秒前
意志所向完成签到,获得积分10
22秒前
23秒前
CodeCraft应助英姿不是我采纳,获得10
24秒前
24秒前
SciGPT应助洁净小鸽子采纳,获得10
25秒前
25秒前
slk关注了科研通微信公众号
26秒前
26秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073149
关于积分的说明 9129737
捐赠科研通 2764836
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009