Multiaxial creep–fatigue failure mechanism and life prediction of a turbine blade based on a unified numerical solution approach

蠕动 涡轮叶片 刀(考古) 结构工程 材料科学 失效机理 机制(生物学) 疲劳试验 涡轮机 工程类 机械工程 复合材料 物理 量子力学
作者
X.C. Zhang,Le Xu,Run‐Zi Wang,Tiwen Lu,Lei He,Takamoto Itoh,Xian‐Cheng Zhang
出处
期刊:Fatigue & Fracture of Engineering Materials & Structures [Wiley]
卷期号:47 (8): 3015-3031
标识
DOI:10.1111/ffe.14360
摘要

Abstract Exposure of turbine blades to cyclic torsional loading at high temperature, stemming from pre‐torque installation and the aerodynamic forces during operation, has the potential to induce substantial creep–fatigue damage, thereby contributing to the likelihood of premature failure. Investigating the deformation mechanisms and proposing a reliable life prediction method aiming at torsional loading is critical to ensure the structural integrity of turbine blades. This study conducted strain‐controlled fatigue and creep–fatigue tests on Inconel 718 superalloy, employing a multiaxial servo‐hydraulic testing machine. Electron backscattering diffraction elucidated deformation and damage mechanisms, forming a basis for subsequent constitutive modeling and life prediction. The lack of creep–fatigue mechanical behavior and microscopic failure mechanism when stress triaxiality equal to 0 is filled, which provides the theoretical basis and data support for the life design and damage assessment of this material under extreme service conditions. The unified viscoplasticity constitutive model effectively characterized macroscopic deformation under torsional loading. Prediction of creep–fatigue life under torsional loading, utilizing the multiaxial ductility factor‐modified strain energy density exhaustion model, demonstrated excellent alignment with experimental findings. Finally, parametric analyses of stress distribution and damage assessment under different conditions were carried out for the example of a turbine blade with relatively rarely considered aerodynamic loading as a variable. It is expected to be popularized and applied in life design and damage assessment of high‐temperature structures under multiaxial loading in engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wsq完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
ss完成签到,获得积分10
3秒前
科研通AI2S应助鳗鱼摇伽采纳,获得10
3秒前
BlackP完成签到,获得积分10
4秒前
5秒前
6秒前
华仔应助柯白梦采纳,获得10
6秒前
song完成签到,获得积分10
7秒前
7秒前
文静的芮完成签到,获得积分10
7秒前
CQMZY_2025完成签到,获得积分10
9秒前
Evander发布了新的文献求助10
10秒前
大力出奇迹完成签到,获得积分10
11秒前
wei发布了新的文献求助10
11秒前
wasailinlaomu发布了新的文献求助10
11秒前
EchoH应助小绿孩不高兴采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
桂花载酒少年游完成签到 ,获得积分10
12秒前
14秒前
123发布了新的文献求助10
16秒前
情怀应助xin采纳,获得10
16秒前
无花果应助wei采纳,获得10
17秒前
17秒前
17秒前
opticalff发布了新的文献求助30
17秒前
桐桐应助柴胡采纳,获得10
18秒前
18秒前
18秒前
萧东辰完成签到,获得积分10
20秒前
asd完成签到,获得积分10
20秒前
lf-leo发布了新的文献求助10
20秒前
20秒前
23秒前
哦吼发布了新的文献求助10
23秒前
红火发布了新的文献求助10
23秒前
yuhui完成签到,获得积分10
23秒前
24秒前
yuyu发布了新的文献求助10
24秒前
joxes完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838