Multiaxial creep–fatigue failure mechanism and life prediction of a turbine blade based on a unified numerical solution approach

蠕动 涡轮叶片 刀(考古) 结构工程 材料科学 失效机理 机制(生物学) 疲劳试验 涡轮机 工程类 机械工程 复合材料 物理 量子力学
作者
X.C. Zhang,Le Xu,Run‐Zi Wang,Tiwen Lu,Lei He,Takamoto Itoh,Xian‐Cheng Zhang
出处
期刊:Fatigue & Fracture of Engineering Materials & Structures [Wiley]
卷期号:47 (8): 3015-3031
标识
DOI:10.1111/ffe.14360
摘要

Abstract Exposure of turbine blades to cyclic torsional loading at high temperature, stemming from pre‐torque installation and the aerodynamic forces during operation, has the potential to induce substantial creep–fatigue damage, thereby contributing to the likelihood of premature failure. Investigating the deformation mechanisms and proposing a reliable life prediction method aiming at torsional loading is critical to ensure the structural integrity of turbine blades. This study conducted strain‐controlled fatigue and creep–fatigue tests on Inconel 718 superalloy, employing a multiaxial servo‐hydraulic testing machine. Electron backscattering diffraction elucidated deformation and damage mechanisms, forming a basis for subsequent constitutive modeling and life prediction. The lack of creep–fatigue mechanical behavior and microscopic failure mechanism when stress triaxiality equal to 0 is filled, which provides the theoretical basis and data support for the life design and damage assessment of this material under extreme service conditions. The unified viscoplasticity constitutive model effectively characterized macroscopic deformation under torsional loading. Prediction of creep–fatigue life under torsional loading, utilizing the multiaxial ductility factor‐modified strain energy density exhaustion model, demonstrated excellent alignment with experimental findings. Finally, parametric analyses of stress distribution and damage assessment under different conditions were carried out for the example of a turbine blade with relatively rarely considered aerodynamic loading as a variable. It is expected to be popularized and applied in life design and damage assessment of high‐temperature structures under multiaxial loading in engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆大门给清脆大门的求助进行了留言
刚刚
1秒前
Asa发布了新的文献求助10
1秒前
2秒前
花花发布了新的文献求助10
2秒前
YufanZhang完成签到,获得积分10
2秒前
传奇3应助余欣采纳,获得10
2秒前
2秒前
2秒前
2秒前
饱满夏瑶完成签到,获得积分10
3秒前
3秒前
隐形曼青应助flysky120采纳,获得10
3秒前
CNSSCI完成签到,获得积分10
3秒前
CipherSage应助朝暾采纳,获得10
4秒前
5秒前
鸽子发布了新的文献求助10
5秒前
6秒前
黄淮科研小白龙完成签到 ,获得积分10
6秒前
6秒前
瘦瘦青荷完成签到,获得积分10
6秒前
甜甜的觅夏完成签到,获得积分10
6秒前
百里丹珍发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
深情安青应助临界采纳,获得10
7秒前
LW完成签到,获得积分10
7秒前
Mystic发布了新的文献求助10
7秒前
亚婷儿完成签到,获得积分10
8秒前
AQ完成签到,获得积分10
8秒前
YufanZhang发布了新的文献求助10
9秒前
9秒前
迅速的巧曼完成签到 ,获得积分10
9秒前
9秒前
9秒前
专注无声发布了新的文献求助10
10秒前
饱满夏瑶发布了新的文献求助10
10秒前
Pursuit发布了新的文献求助10
10秒前
华仔应助ying采纳,获得10
11秒前
11秒前
解语花发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978