A cross-scenario and cross-subject domain adaptation method for driving fatigue detection

计算机科学 域适应 适应(眼睛) 脑电图 人工智能 领域(数学分析) 交叉验证 机器学习 心理学 数学 数学分析 分类器(UML) 神经科学 精神科
作者
Yun Luo,Wei Liu,Hanqi Li,Yong Lu,Bao‐Liang Lu
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (4): 046004-046004
标识
DOI:10.1088/1741-2552/ad546d
摘要

Abstract Objective. The scarcity of electroencephalogram (EEG) data, coupled with individual and scenario variations, leads to considerable challenges in real-world EEG-based driver fatigue detection. We propose a domain adaptation method that utilizes EEG data collected from a laboratory to supplement real-world EEG data and constructs a cross-scenario and cross-subject driver fatigue detection model for real-world scenarios. Approach. First, we collect EEG data from subjects participating in a driving experiment conducted in both laboratory and real-world scenarios. To address the issue of data scarcity, we build a real-world fatigued driving detection model by integrating the real-world data with the laboratory data. Then, we propose a method named cross-scenario and cross-subject domain adaptation (CS2DA), which aims to eliminate the domain shift problem caused by individual variances and scenario differences. Adversarial learning is adopted to extract the common features observed across different subjects within the same scenario. The multikernel maximum mean discrepancy (MK-MMD) method is applied to further minimize scenario differences. Additionally, we propose a conditional MK-MMD constraint to better utilize label information. Finally, we use seven rules to fuse the predicted labels. Main results. We evaluate the CS2DA method through extensive experiments conducted on the two EEG datasets created in this work: the SEED-VLA and the SEED-VRW datasets. Different domain adaptation methods are used to construct a real-world fatigued driving detection model using data from laboratory and real-world scenarios, as well as a combination of both. Our findings show that the proposed CS2DA method outperforms the existing traditional and adversarial learning-based domain adaptation approaches. We also find that combining data from both laboratory and real-world scenarios improves the performance of the model. Significance. This study contributes two EEG-based fatigue driving datasets and demonstrates that the proposed CS2DA method can effectively enhance the performance of a real-world fatigued driving detection model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小月亮爱学习完成签到,获得积分10
2秒前
所所应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得30
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
3秒前
彭于晏应助dzjin采纳,获得10
3秒前
4秒前
wrx发布了新的文献求助10
4秒前
nana发布了新的文献求助10
4秒前
安安放完成签到,获得积分10
5秒前
妙妙发布了新的文献求助10
7秒前
缥缈寻真发布了新的文献求助10
7秒前
7秒前
海蓝青空发布了新的文献求助10
8秒前
Bystander完成签到 ,获得积分10
8秒前
Ffpcjwcx完成签到,获得积分10
9秒前
starboy2nd应助威威采纳,获得50
9秒前
ren发布了新的文献求助20
12秒前
13秒前
14秒前
17秒前
lio发布了新的文献求助10
17秒前
superfatcat完成签到,获得积分10
19秒前
zhangmazi发布了新的文献求助10
19秒前
20秒前
fzhou留下了新的社区评论
20秒前
dzjin发布了新的文献求助10
22秒前
25秒前
菠菜发布了新的文献求助50
26秒前
海蓝青空完成签到,获得积分20
26秒前
时光如梭发布了新的文献求助10
26秒前
zeng完成签到,获得积分10
27秒前
27秒前
西西发布了新的文献求助10
27秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388028
求助须知:如何正确求助?哪些是违规求助? 3000553
关于积分的说明 8791980
捐赠科研通 2686591
什么是DOI,文献DOI怎么找? 1471709
科研通“疑难数据库(出版商)”最低求助积分说明 680474
邀请新用户注册赠送积分活动 673206