Highway Main Lane Vehicles Driving Behavior Prediction Based on Residual-Transformer

残余物 汽车工程 变压器 计算机科学 工程类 电压 电气工程 算法
作者
Lin Hu,Dacong Li,Jiacai Liao,Xin Zhang,Qiqi Li,Maitane Berecibar,Md Sazzad Hosen
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/tvt.2024.3400681
摘要

Highways, as a type of high-grade road, are an essential component of intelligent connected vehicle testing and a crucial aspect in achieving fully autonomous driving technology. To effectively predict the driver behaviors when encountering merging vehicles in high-speed merging areas, this paper proposes a high-speed main lane vehicle driving behavior model that combines Convolutional Neural Network (CNN) based on Residual Structure with a Transformer network. This model takes input in the form of the target vehicle's motion state information and surrounding vehicle interaction data, and predicts the current driving behavior state of the target vehicle as well as the next-stage driving behavior. Finally, the effectiveness of this model is validated on the Next-Generation Simulation (NGSIM) dataset and the Exits and Entries Drone (exiD) dataset. Comparative experiments with the Time series Transformer (TST) model and the Multi-head Attention CNN-LSTM (MCNNLSTM) model are conducted. The results indicate that the proposed model outperforms other models in aspects such as driving behavior recognition, with a correct identification rate of 94% and 95% in the two major datasets, respectively. The driving behavior prediction model presented in this paper can assist intelligent connected vehicles in high-speed ramp merging decision-making and planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiongxx发布了新的文献求助10
刚刚
FashionBoy应助Qiu采纳,获得10
1秒前
1秒前
1秒前
竹筏过海应助研友_LMBa6n采纳,获得30
3秒前
yang发布了新的文献求助20
3秒前
赘婿应助皮皮最可爱采纳,获得10
4秒前
久而久之完成签到 ,获得积分10
4秒前
4秒前
ding应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
janarbek应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
Hello应助科研通管家采纳,获得10
5秒前
虚心的如曼完成签到 ,获得积分10
5秒前
xzx发布了新的文献求助10
7秒前
研二发核心完成签到,获得积分10
7秒前
善学以致用应助zzz采纳,获得10
8秒前
9秒前
11秒前
JamesPei应助小柒采纳,获得10
13秒前
打打应助zzy采纳,获得10
13秒前
打打应助从容的慕山采纳,获得10
15秒前
17秒前
梦断奈何完成签到 ,获得积分10
18秒前
melisa完成签到,获得积分10
19秒前
H1998发布了新的文献求助10
21秒前
科研通AI2S应助啊哦嘿采纳,获得10
22秒前
斯文败类应助德尔塔捱斯采纳,获得10
23秒前
23秒前
25秒前
tx完成签到,获得积分10
26秒前
28秒前
mof发布了新的文献求助10
28秒前
叮叮车完成签到 ,获得积分10
29秒前
难摧发布了新的文献求助10
30秒前
32秒前
32秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793077
关于积分的说明 7805362
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303232
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291