Velocity Prediction of a Pipeline Inspection Gauge (PIG) with Machine Learning

里程表 管道(软件) 管道运输 人工神经网络 计算机科学 人工智能 模拟 实时计算 汽车工程 工程类 机械工程 操作系统
作者
Victor C. G. Freitas,Valbério Gonzaga De Araujo,Daniel Carlos de Carvalho Crisóstomo,Gustavo Fernandes de Lima,Adrião Duarte Dória Neto,Andrés O. Salazar
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:22 (23): 9162-9162 被引量:3
标识
DOI:10.3390/s22239162
摘要

A device known as a pipeline inspection gauge (PIG) runs through oil and gas pipelines which performs various maintenance operations in the oil and gas industry. The PIG velocity, which plays a role in the efficiency of these operations, is usually determined indirectly from odometers installed in it. Although this is a relatively simple technique, the loss of contact between the odometer wheel and the pipeline results in measurement errors. To help reduce these errors, this investigation employed neural networks to estimate the speed of a prototype PIG, using the pressure difference that acts on the device inside the pipeline and its acceleration instead of using odometers. Static networks (e.g., multilayer perceptron) and recurrent networks (e.g., long short-term memory) were built, and in addition, a prototype PIG was developed with an embedded system based on Raspberry Pi 3 to collect speed, acceleration and pressure data for the model training. The implementation of the supervised neural networks used the Python library TensorFlow package. To train and evaluate the models, we used the PIG testing pipeline facilities available at the Petroleum Evaluation and Measurement Laboratory of the Federal University of Rio Grande do Norte (LAMP/UFRN). The results showed that the models were able to learn the relationship among the differential pressure, acceleration and speed of the PIG. The proposed approach can complement odometer-based systems, increasing the reliability of speed measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
micett完成签到,获得积分10
1秒前
4秒前
4秒前
123y完成签到,获得积分10
4秒前
卓诗云发布了新的文献求助10
7秒前
8秒前
CodeCraft应助liyk采纳,获得20
9秒前
Anastasia发布了新的文献求助10
10秒前
怕黑半仙发布了新的文献求助20
10秒前
无语的百招完成签到,获得积分20
10秒前
完美梨愁发布了新的文献求助10
11秒前
12秒前
田様应助荆轲刺秦王采纳,获得10
13秒前
Anastasia完成签到,获得积分20
15秒前
想吃芝士焗饭完成签到 ,获得积分10
15秒前
小马甲应助红尘侠客采纳,获得10
15秒前
猪猪hero应助卓诗云采纳,获得10
15秒前
傲娇的小蘑菇完成签到,获得积分20
15秒前
费雪卉应助梅良心采纳,获得10
16秒前
x银河里发布了新的文献求助10
18秒前
20秒前
21秒前
21秒前
科研通AI5应助机灵的煎蛋采纳,获得10
22秒前
至初完成签到 ,获得积分10
23秒前
23秒前
wangjm发布了新的文献求助10
23秒前
科研小农民完成签到,获得积分10
25秒前
25秒前
26秒前
26秒前
26秒前
orixero应助张尔采纳,获得10
27秒前
flysky120发布了新的文献求助10
28秒前
30秒前
一蓑烟雨任平生应助wangjm采纳,获得10
30秒前
李英俊完成签到,获得积分10
31秒前
hj1212完成签到,获得积分10
31秒前
淦淦发布了新的文献求助10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673032
求助须知:如何正确求助?哪些是违规求助? 3229027
关于积分的说明 9783144
捐赠科研通 2939375
什么是DOI,文献DOI怎么找? 1611009
邀请新用户注册赠送积分活动 760771
科研通“疑难数据库(出版商)”最低求助积分说明 736242