Low-pass U-Net: a segmentation method to improve strip steel defect detection

增采样 计算机科学 分割 特征(语言学) 混叠 人工智能 滤波器(信号处理) 模式识别(心理学) 高斯滤波器 深度学习 Sørensen–骰子系数 插值(计算机图形学) 推论 高斯分布 算法 计算机视觉 图像分割 图像(数学) 哲学 物理 量子力学 语言学
作者
Bo Liu,Bin Yang,Yelong Zhao,Jianqiang Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (3): 035405-035405 被引量:7
标识
DOI:10.1088/1361-6501/aca34a
摘要

Abstract The detection of strip steel surface defects is critical to ensuring the quality of strip steel products. Many deep learning-based methods have been presented and can achieve outstanding performance. However, most of these methods ignore the frequency information among defect areas, which plays an important role in defect detection. This paper proposes a deep learning method to further improve defect segmentation effects based on existing methods, called low-pass U-Net. Since most defects in strip steel are located in high-frequency areas, we implement a low-pass filter before downsampling in the encoder, which prevents aliasing and separates out high-frequency information. The high-frequency feature is transferred into the decoder to assist segmentation. Following previous studies, we propose an adaptive variance Gaussian low-pass layer to generate different filters according to each spatial location of the feature map, with lower computing resource use. Furthermore, to detect defects at significantly different scales, an improved Hypercolumn module is adopted at the end of the decoder to upsample and fuse the feature maps in different resolutions, where Subpixel replaces the bilinear interpolation to refine the upsampled results. The proposed method is validated on practical datasets and achieves considerable performance improvement (with a best Dice coefficient of 0.903), which demonstrates the effectiveness of low-pass U-Net. The introduction of the adaptive variance Gaussian low-pass filter layer results in a 3% increase in Dice coefficient in a comparative inference time, which achieves a balance in performance, inference time and complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
封迎松发布了新的文献求助30
刚刚
Orange应助陈木子采纳,获得10
3秒前
动听草莓完成签到,获得积分10
3秒前
mola发布了新的文献求助10
3秒前
zz发布了新的文献求助10
4秒前
古木完成签到,获得积分10
4秒前
zhang完成签到,获得积分10
4秒前
Lucas应助乐观的从云采纳,获得10
4秒前
HMONEY完成签到,获得积分10
6秒前
jingsihan完成签到,获得积分10
6秒前
爱屋及乌完成签到,获得积分10
7秒前
郝为民完成签到,获得积分10
7秒前
丹麦曲奇完成签到,获得积分10
7秒前
8秒前
活力热狗应助愉快皮卡丘采纳,获得10
8秒前
Meng完成签到,获得积分10
9秒前
Circle发布了新的文献求助30
9秒前
沉淀完成签到,获得积分20
9秒前
积极进行完成签到,获得积分10
9秒前
9秒前
Jasper应助liulong采纳,获得30
10秒前
良辰应助pzy采纳,获得10
10秒前
木头人给小垃圾的求助进行了留言
10秒前
Akim应助疯狂的海菡采纳,获得30
10秒前
善良夜梅发布了新的文献求助10
11秒前
科研通AI2S应助Annabelle采纳,获得10
11秒前
12秒前
12秒前
13秒前
木头人应助LQY采纳,获得20
13秒前
13秒前
失忆的金鱼应助hh0采纳,获得10
13秒前
breath发布了新的文献求助10
13秒前
13秒前
14秒前
所所应助英俊寻真采纳,获得10
14秒前
桔柚橙发布了新的文献求助10
14秒前
thomas完成签到,获得积分10
14秒前
14秒前
15秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3263951
求助须知:如何正确求助?哪些是违规求助? 2904238
关于积分的说明 8328949
捐赠科研通 2574374
什么是DOI,文献DOI怎么找? 1399073
科研通“疑难数据库(出版商)”最低求助积分说明 654403
邀请新用户注册赠送积分活动 633040