已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Low-pass U-Net: a segmentation method to improve strip steel defect detection

增采样 计算机科学 分割 特征(语言学) 混叠 人工智能 滤波器(信号处理) 模式识别(心理学) 高斯滤波器 深度学习 Sørensen–骰子系数 插值(计算机图形学) 推论 高斯分布 算法 计算机视觉 图像分割 图像(数学) 哲学 物理 量子力学 语言学
作者
Bo Liu,Bin Yang,Yelong Zhao,Jianqiang Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (3): 035405-035405 被引量:7
标识
DOI:10.1088/1361-6501/aca34a
摘要

Abstract The detection of strip steel surface defects is critical to ensuring the quality of strip steel products. Many deep learning-based methods have been presented and can achieve outstanding performance. However, most of these methods ignore the frequency information among defect areas, which plays an important role in defect detection. This paper proposes a deep learning method to further improve defect segmentation effects based on existing methods, called low-pass U-Net. Since most defects in strip steel are located in high-frequency areas, we implement a low-pass filter before downsampling in the encoder, which prevents aliasing and separates out high-frequency information. The high-frequency feature is transferred into the decoder to assist segmentation. Following previous studies, we propose an adaptive variance Gaussian low-pass layer to generate different filters according to each spatial location of the feature map, with lower computing resource use. Furthermore, to detect defects at significantly different scales, an improved Hypercolumn module is adopted at the end of the decoder to upsample and fuse the feature maps in different resolutions, where Subpixel replaces the bilinear interpolation to refine the upsampled results. The proposed method is validated on practical datasets and achieves considerable performance improvement (with a best Dice coefficient of 0.903), which demonstrates the effectiveness of low-pass U-Net. The introduction of the adaptive variance Gaussian low-pass filter layer results in a 3% increase in Dice coefficient in a comparative inference time, which achieves a balance in performance, inference time and complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助77采纳,获得10
刚刚
1秒前
鸽子的迷信完成签到,获得积分10
2秒前
心之所向878完成签到,获得积分10
2秒前
4秒前
淡定无颜发布了新的文献求助10
5秒前
5秒前
77完成签到,获得积分20
6秒前
时老完成签到,获得积分10
7秒前
洪婉馨发布了新的文献求助10
8秒前
拼搏的松鼠完成签到,获得积分10
8秒前
周声声完成签到,获得积分10
12秒前
jovi完成签到,获得积分10
16秒前
ss完成签到,获得积分20
18秒前
19秒前
Mydddg完成签到,获得积分10
20秒前
MEIMEI发布了新的文献求助10
21秒前
21秒前
allton完成签到,获得积分10
21秒前
22秒前
22秒前
22秒前
周丹发布了新的文献求助10
22秒前
wl发布了新的文献求助30
24秒前
JamesPei应助赵乂采纳,获得10
25秒前
孙嘉遇发布了新的文献求助10
26秒前
周声声发布了新的文献求助10
26秒前
Leo发布了新的文献求助10
27秒前
27秒前
小毛发布了新的文献求助10
27秒前
28秒前
somin应助reedleaf采纳,获得10
29秒前
ss发布了新的文献求助10
30秒前
35秒前
小居居完成签到,获得积分10
37秒前
37秒前
袅袅关注了科研通微信公众号
37秒前
dong应助飞云之下采纳,获得10
38秒前
40秒前
42秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959865
求助须知:如何正确求助?哪些是违规求助? 3506102
关于积分的说明 11127857
捐赠科研通 3238043
什么是DOI,文献DOI怎么找? 1789463
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021