Multiscale Physics-Informed Neural Networks for Stiff Chemical Kinetics

颂歌 人工神经网络 常微分方程 刚性方程 残余物 计算机科学 应用数学 算法 动能 数学优化 数学 微分方程 人工智能 数学分析 物理 经典力学
作者
Yu‐Ting Weng,Dezhi Zhou
出处
期刊:Journal of Physical Chemistry A [American Chemical Society]
卷期号:126 (45): 8534-8543 被引量:15
标识
DOI:10.1021/acs.jpca.2c06513
摘要

In this paper, a multiscale physics-informed neural network (MPINN) approach is proposed based on the regular physics-informed neural network (PINN) for solving stiff chemical kinetic problems with governing equations of stiff ordinary differential equations (ODEs). In MPINNs, chemical species with different time scales are grouped and trained by multiple corresponding neural networks with the same structure. The adaptive weight based on a key performance indicator is assigned to each loss term when calculating the summation of loss residues. With this structure, MPINNs provide a framework to solve challenging stiff chemical kinetic problems without any stiffness-removal artifacts before training. In addition, by introducing a small number of ground truth data (GTD) points (less than 10% of the number required for residual loss calculation) and adding data loss terms into loss functions, MPINNs show superior ability to represent stiff ODE solutions at any desired time. The accuracy of MPINNs is tested with classical chemical kinetic problems, by comparing with the regular PINN and other state-of-the-art methods with special consideration for solving stiff chemical kinetic problems with PINNs. The validation results show that MPINNs can effectively avoid the influence of stiffness on neural network optimization. Compared with the traditional deep neural network only trained by GTD, MPINNs can use no data or a relatively small amount of data to achieve high-precision prediction of stiff chemical ODEs. The proposed approach is very promising for solving stiff chemical kinetics, opening up possibilities of MPINN application in different fields involving stiff chemical dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟花应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
麟钰发布了新的文献求助10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
fanyueyue应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
科研乞丐应助科研通管家采纳,获得20
1秒前
科目三应助科研通管家采纳,获得30
1秒前
慕青应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
忘的澜完成签到,获得积分10
2秒前
duanqianqian发布了新的文献求助10
2秒前
xiangxiang123发布了新的文献求助10
3秒前
3秒前
拉长的服饰完成签到,获得积分10
3秒前
来日方长发布了新的文献求助10
3秒前
循环bug发布了新的文献求助10
4秒前
陈全刚完成签到,获得积分10
4秒前
Physio发布了新的文献求助10
5秒前
_glimmer完成签到,获得积分10
7秒前
北林完成签到,获得积分10
7秒前
黄黄黄应助周小鱼采纳,获得20
8秒前
自觉荔枝完成签到,获得积分10
9秒前
9秒前
prime发布了新的文献求助10
10秒前
Xwu发布了新的文献求助10
11秒前
12秒前
无感慢热关注了科研通微信公众号
13秒前
悦耳亦云完成签到 ,获得积分10
14秒前
ding应助ZJH采纳,获得10
14秒前
prime完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997731
求助须知:如何正确求助?哪些是违规求助? 3537261
关于积分的说明 11271137
捐赠科研通 3276409
什么是DOI,文献DOI怎么找? 1806986
邀请新用户注册赠送积分活动 883639
科研通“疑难数据库(出版商)”最低求助积分说明 809982