Abiotic stresses, such as drought, salinity, and heat, exacerbated by climate change, pose significant challenges to global agriculture. These stresses negatively impact crop physiology, leading to yield losses and complicating efforts to breed resilient varieties. While advancements in molecular biology and genomics have identified stress-resistance genes, their effective utilization in breeding programs depends on precise phenotypic evaluation under diverse stress conditions. High-throughput phenotyping (HTP) technologies have emerged as indispensable tools, enabling non-destructive, rapid assessment of critical traits like root architecture, chlorophyll content, and canopy temperature in controlled and field environments. Unlike existing reviews, this manuscript critically addresses technological barriers such as cost scalability, field adaptability, and the integration of artificial intelligence for real-time data analysis. Additionally, it provides a fresh perspective on multi-omics integration in phenomics to bridge the genotype–phenotype gap, ensuring a more holistic approach to precision agriculture. This review bridges gaps in crop improvement by identifying practical solutions to enhance the adoption of HTP in breeding programs. It ensures food security amidst the escalating impacts of climate change.