A fault diagnosis method with multi-source data fusion based on hierarchical attention for AUV

计算机科学 传感器融合 断层(地质) 融合 数据挖掘 人工智能 实时计算 语言学 地质学 哲学 地震学
作者
Shaoxuan Xia,Xiaofeng Zhou,Haibo Shi,Shuai Li,Chunhui Xu
出处
期刊:Ocean Engineering [Elsevier]
卷期号:266: 112595-112595 被引量:15
标识
DOI:10.1016/j.oceaneng.2022.112595
摘要

Multi-source data fusion is an important method to improve the performance of Autonomous Underwater Vehicle (AUV) fault diagnosis. However, most of the current fault diagnosis methods are based on a single data source or treat multi-source data as single. Firstly, we demonstrate the necessity of multi-source data fusion and propose a universal data hierarchy. Then, a hierarchical attention based multi-source data fusion method is proposed for fault diagnosis (HAMFD). The method consists of an encoder–decoder network, a fusion network stacked with encoders and attention mechanisms, and a fault recognition method based on attention distribution. The fusion network uses the encoder and hierarchical attention to extract the deep features, and fuse the features hierarchically. We use the multi-layer attention distribution to explain the fault evaluation and realize fault recognition. A random mask fusion strategy is designed for redundancy and a feature orthogonalization method is proposed for the strong coupling among multiple data sources. The proposed method is validated on the monitoring data of Qianlong-2 AUV obtained during the sea trial in the South China Sea. The fault detection rate is more than 98%, the recognition rate is about 100% for strong faults, and more than 90% for other faults. • For multi-source of AUV data, hierarchical attention is applied for data fusion. • A universal four-layer hierarchy of AUV multi-source data is proposed. • Fault recognition through the interpretability of attention mechanism. • We proposed feature orthogonalization and random mask for the redundancy. • The experiments on Qianlong-2 AUV show effectiveness and superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YYL发布了新的文献求助10
刚刚
mumu发布了新的文献求助10
刚刚
Son4904完成签到,获得积分10
刚刚
kepwake完成签到,获得积分10
1秒前
1秒前
1秒前
田田田田完成签到,获得积分10
2秒前
2秒前
古药完成签到,获得积分10
2秒前
zy完成签到,获得积分0
2秒前
飞飞完成签到,获得积分10
3秒前
小马甲应助wjl采纳,获得10
3秒前
4秒前
dongdongqiang完成签到,获得积分10
4秒前
小华发布了新的文献求助30
4秒前
艾维奇完成签到,获得积分10
4秒前
彭于晏应助善良苠采纳,获得10
4秒前
优雅小橘子完成签到 ,获得积分10
5秒前
大模型应助liv采纳,获得10
5秒前
文静青烟发布了新的文献求助10
5秒前
好运锦鲤应助实验顺顺顺采纳,获得10
6秒前
上官若男应助月儿采纳,获得10
6秒前
大个应助张董事长采纳,获得10
6秒前
6秒前
7秒前
Jr L完成签到,获得积分10
7秒前
dmoney发布了新的文献求助10
7秒前
雪白的稀完成签到,获得积分10
7秒前
7秒前
WEE发布了新的文献求助10
8秒前
Buxi完成签到,获得积分10
8秒前
8秒前
9秒前
lf-leo完成签到,获得积分10
9秒前
听雪冬眠完成签到,获得积分10
9秒前
9秒前
10秒前
清脆的连虎完成签到,获得积分10
10秒前
隐形曼青应助研玲采纳,获得10
11秒前
Felix应助lin采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516885
求助须知:如何正确求助?哪些是违规求助? 3099068
关于积分的说明 9243247
捐赠科研通 2794381
什么是DOI,文献DOI怎么找? 1533391
邀请新用户注册赠送积分活动 712839
科研通“疑难数据库(出版商)”最低求助积分说明 707445