A fault diagnosis method with multi-source data fusion based on hierarchical attention for AUV

计算机科学 传感器融合 断层(地质) 融合 数据挖掘 人工智能 实时计算 语言学 地质学 哲学 地震学
作者
Shaoxuan Xia,Xiaofeng Zhou,Haibo Shi,Shuai Li,Chunhui Xu
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:266: 112595-112595 被引量:15
标识
DOI:10.1016/j.oceaneng.2022.112595
摘要

Multi-source data fusion is an important method to improve the performance of Autonomous Underwater Vehicle (AUV) fault diagnosis. However, most of the current fault diagnosis methods are based on a single data source or treat multi-source data as single. Firstly, we demonstrate the necessity of multi-source data fusion and propose a universal data hierarchy. Then, a hierarchical attention based multi-source data fusion method is proposed for fault diagnosis (HAMFD). The method consists of an encoder–decoder network, a fusion network stacked with encoders and attention mechanisms, and a fault recognition method based on attention distribution. The fusion network uses the encoder and hierarchical attention to extract the deep features, and fuse the features hierarchically. We use the multi-layer attention distribution to explain the fault evaluation and realize fault recognition. A random mask fusion strategy is designed for redundancy and a feature orthogonalization method is proposed for the strong coupling among multiple data sources. The proposed method is validated on the monitoring data of Qianlong-2 AUV obtained during the sea trial in the South China Sea. The fault detection rate is more than 98%, the recognition rate is about 100% for strong faults, and more than 90% for other faults. • For multi-source of AUV data, hierarchical attention is applied for data fusion. • A universal four-layer hierarchy of AUV multi-source data is proposed. • Fault recognition through the interpretability of attention mechanism. • We proposed feature orthogonalization and random mask for the redundancy. • The experiments on Qianlong-2 AUV show effectiveness and superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
endlesszhang完成签到,获得积分10
刚刚
直率翠绿完成签到,获得积分10
1秒前
2秒前
科研通AI2S应助研友_8yNO0L采纳,获得10
3秒前
3秒前
无尘泪完成签到,获得积分10
3秒前
共享精神应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
NN应助科研通管家采纳,获得10
4秒前
揽星完成签到,获得积分10
5秒前
yu应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
NN应助科研通管家采纳,获得10
5秒前
zzx应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
6秒前
CipherSage应助kiki采纳,获得10
6秒前
梅子完成签到 ,获得积分10
7秒前
仲夏夜之梦完成签到,获得积分10
8秒前
杰尼龟完成签到,获得积分10
9秒前
12秒前
由由完成签到,获得积分10
13秒前
14秒前
研友_8yNO0L发布了新的文献求助10
16秒前
九九发布了新的文献求助10
17秒前
vivianzhang完成签到,获得积分10
17秒前
喵喵完成签到,获得积分10
19秒前
20秒前
20秒前
苏谶发布了新的文献求助10
20秒前
hhderek发布了新的文献求助10
21秒前
幽默服饰完成签到,获得积分10
22秒前
23秒前
丘比特应助大勺子采纳,获得20
24秒前
久9完成签到 ,获得积分10
24秒前
陈预立完成签到,获得积分10
25秒前
LMX完成签到 ,获得积分10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761129
求助须知:如何正确求助?哪些是违规求助? 3305049
关于积分的说明 10132066
捐赠科研通 3019064
什么是DOI,文献DOI怎么找? 1657959
邀请新用户注册赠送积分活动 791747
科研通“疑难数据库(出版商)”最低求助积分说明 754604